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Fig.1 Schematic diagram of wind-thermal-energy
storage bundling system connected to
the series compensated grid
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Fig.2 Equivalent circuit of wind-thermal-energy
storage bundling system connected
to the series compensated grid
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Fig.3 The modal speed of online thermal generator
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Mitigating subsynchronous resonance using supplementary damping control of battery
energy storage in a wind-thermal-storage bundling system

HU Yonggiang', WANG Xi*, WU Linlin’, XIE Xiaorong’, BU Haitang', SU Tianyu’
(1. Beifang Duolun Renewable Energy Co., Ltd., Xilingol League 027200, China; 2. Tsinghua University (State Key
Laboratory of Power System Operation and Control), Beijing 100084, China; 3. North China Electric Power
Research Institute Co., Ltd., Beijing 100045, China)

Abstract: Subsynchronous resonance (SSR) caused by the interaction between thermal power generators and series-capacitor-
compensated AC lines, has been a significant concern in China's power grids. An energy storage supplementary damping
control (SDC) to suppress SSR is proposed in this paper. SDC enables local feedback, and utilizes the coupling between
generators and power grid to enhance the overall damping level. Firstly, the target system is modelled and the mechanism and
characteristics of its SSR problem are clarified through frequency and time-domain analyses. Then, the supplementary damping
control strategy is established based on battery energy storage system (BESS). Its control parameters and adding positions are
optimized, and the impact of SDC's control capacity on BESS's normal functions is analyzed. Finally, the effectiveness and
feasibility of the proposed SDC are verified through electromagnetic transient simulations with a real-world project, i.e., the
Shangdu wind-thermal-energy storage bundling system. The simulation results also show that the proposed SDC can effectively
address the SSR issue with reduced control cost and equipment investment cost, serving as a more economical solution.
Keywords: subsynchronous resonance (SSR); supplementary damping control (SDC); resonance mitigation; battery energy

storage system (BESS); wind-thermal-storage bundling system; series compensation
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BiGRU-PLE based short-term joint forecasting of electric, cooling and heat loads

XU Yihao, MEI Fei, LU Jiahua
(School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

Abstract: Accurate forecasting of electric, cooling and heating loads is an important prerequisite and foundation for the
operation scheduling and energy management of integrated energy systems. Leveraging the energy coupling characteristics
between multivariate load, this paper constructs a joint prediction model for multivariate load based on bidirectional gated
recurrent units (BiGRU) and a progressive layered extraction (PLE) network architecture. Firstly, the meteorological features
with high correlation are screened as input features of the model through the maximum information coefficient. Then, the
BiGRU network is used to extract the temporal features of the multivariate load time series under the integrated energy system
and reconstruct the data in this way. Secondly, for the characteristics of different energy sources that are coupled with each
other, the improved progressive hierarchical extraction network structure is proposed, and the coupling features are extracted
from the complex and multidimensional data through the multilevel sharing of the feature extraction layer. Finally, by changing
the structural parameters of the sub-task tower module, the coupled feature information is differentially fused, and the multiple
load prediction results are obtained. The actual example results show that the maximum information coefficient screening
method adopted in the article is more suitable for feature selection of meteorological data than the traditional Pearson
coefficient screening method, and the proposed BiGRU-PLE multivariate load prediction model can reduce the prediction error
by more than 5% compared with the single-task model, and by more than 3% compared with the common multitask model.

Keywords: bidirectional gated recurrent unit (BiGRU); maximum information coefficient; coupled feature extraction;

multivariate load forecasting; integrated energy system; multitask learning
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