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融合改进生成对抗与图注意力网络的配电网状态估计

赵奇， 田江， 徐秀之， 吕洋
（国网江苏省电力有限公司苏州供电分公司，江苏 苏州 215004）

摘　要：随着分布式新能源、可控资源等新型元素接入配电网，传统状态估计模型面临量测信息不全、配电网拓扑变

化频繁和负荷时序性波动等新问题，模型估计精度降低。针对该问题，文中提出一种融合改进生成对抗与图注意力

网络的配电网状态估计方法。首先，选取不同的历史时间断面，利用拓扑参数和量测信息生成数据集，通过将双向

长短期记忆网络引入生成对抗网络填补数据中的缺失量测信息；其次，利用图注意力网络自适应地捕捉节点间的空

间动态关系，利用双向长短期记忆（bidirectional long short-term memory, BiLSTM）网络充分挖掘不同时间断面序列

信息的时间耦合关系，拼接形成关于量测量到状态量的时空特征表达，得到改进图神经网络状态估计模型；最后，

在 IEEE 118 节点系统中进行仿真实验，并与卷积神经网络、图注意力网络等算法进行对比。结果表明，文中所提算

法在数据缺失和拓扑时变情况下具有更优的估计效果。
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0    引言

为实现“碳达峰·碳中和”目标，新型配电网迅

速发展，拓扑变化更加频繁，且分布式新能源出力

的随机性、时变性特点增加了系统运行的不确定

性，影响配电网的安全稳定运行[1-3]。状态估计是配

电管理系统重要的组成部分，能够为调度人员提供

准确可靠的数据支撑，对保障配电网安全稳定运行

具有重要意义[4-5]。

目前，加权最小二乘 （weighted least square, WLS）
因其估算结果具有最小方差且无偏的特点，成为状

态估计的常规方法[6]。然而在配电网实际运行中，

配电网拓扑变化频繁，部分节点实时量测数据缺

失，大量分布式新能源的出力受环境因素影响导致

配电网量测量时序性波动，使得 WLS的估计结果

变差 [7-10]。

国内外学者将人工智能算法引入电力系统分

析领域，开展了卓有成效的工作[11-13]。在数据补齐

方面，文献[14-15]利用生成对抗网络 （generative
adversarial network, GAN）补全配电网量测数据并实

现有源配电网的电压优化，验证 GAN在电力系统

中补全数据的可行性；在时序分析方面，文献[16-17]
利用双向长短期记忆（bidirectional  long short-term
memory, BiLSTM）网络对多变量时间序列进行动态

时间建模，通过融合前向与后向的传播计算，实现

功率的短期预测；在拓扑方面，文献[18-19]利用图

注意力网络（graph attention network, GAT），通过调

节量测节点间的注意力系数，深入挖掘数据的动态

空间特征，提高数据驱动模型对拓扑变化的自适应

能力。

目前研究多从单一时间维度或空间维度挖掘

量测量与状态量之间的关系，难以充分提取量测数

据中的时空潜在信息，降低了基于人工智能算法的

状态估计精度。文中针对配电网状态量测数据不

足、拓扑多变、时序波动问题，提出一种融合改进

生成对抗与图注意力网络（BiLSTM-GAN-GAT）的
配电网状态估计方法。创新性主要在于：（1） 提出

一种基于改进 GAN模型的量测数据补全方法，将

BiLSTM嵌入 GAN模型，从前向和后向充分挖掘时

间序列信息，克服了 GAN仅在断面上处理数据的

缺点，从而提高补齐数据的精度。（2） 构建 GAT-
BiLSTM模型，自适应地学习不同拓扑下节点间

数据的空间关系，并且在时间维度上全面捕捉多

断面数据之间的依赖关系，实现了时空信息的深度

融合。 

1    基于 BiLSTM-GAN-GAT 模型的状态估

计方法
 

1.1    基于 BiLSTM 改进 GAN 模型的数据补齐方法

pos
real

由于配电网实时量测仅部分可观测，配电网状

态估计结果精度下降，文中提出基于 BiLSTM的改

进 GAN数据补齐方法。GAN由生成模型（genera-
tive  model,  GM）和判别模型 （discriminative  model,
DM）组成。设历史真实量测数据为 z，噪声向量

为 v，量测序列真实数据的分布关系为 ，噪声向
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量的分布关系为 。将 v作为生成器的输入数据，

得到符合 分布的量测数据，通过神经网络将

映射到 空间，使得生成的数据满足量测数据的

特征[20-21]。

Lgen生成器的损失函数 为： 

Lgen = −Ev∼pv(v) (D (G (v))) （1）

Ev∼pv(v) (·) pv

式中：G(v)为生成器基于噪声向量 v生成的伪量测

数据；D(·)为判别器对数据真实性的评估结果；

为对满足 分布的噪声向量 v进行计算的

数学期望函数。

Ldis判别器的损失函数 为： 

Ldis = −E z∼pos
real(z) (D (z))+Ev∼pv(v) (D (G (v))) （2）

E z∼pos
real(z) (·) pos

real式中： 为对满足 分布的量测样本 z进
行计算的数学期望函数。

生成器和判别器两者互相博弈，通过缩小与目

标分布之间的差距来引导模型达到最优状态[20-21]，

其目标函数 V(G,D)为： 

min
G

max
D

V(G,D) = E z∼pos
real(z)(D(z))−Ev∼pv(v)(D(G(v)))

（3）

该目标函数表明，GAN训练过程本质上是一个

零和博弈问题，生成器致力于生成与真实数据高度

相似的量测数据以混淆判别器，使判别器难以区分

生成数据与真实数据，从而使得补齐的量测数据

最为真实，而判别器则试图区分真实数据和生成

数据。

为克服 GAN仅在断面上补齐数据而忽略历史

量测数据中时间序列信息的缺点，文中将 BiLSTM
层嵌入生成器与判别器中，用于处理和预测时间序

列数据或具有长期依赖关系的序列数据[22-23]，进一

步提高补齐数据的精度。长短期记忆（long short-
term memory, LSTM）网络包含遗忘门、输入门、输

出门和记忆单元[24]。在状态估计数据补齐应用中，

遗忘门决定记忆单元中哪些旧量测信息应被丢弃，

输入门决定哪些新量测信息需要被储存到记忆单

元，输出门决定选择哪些量测信息用于后续的预测

和处理。BiLSTM网络在 LSTM网络的基础上，增

加反向量测序列信息的计算，并将双向信息叠加，

克服了 LSTM网络只能单向地从前一时刻获取信

息的局限性，使得算法在处理长时序量测信息时有

更强的信息分布捕捉能力[25-27]。

xt = (x1, x2, · · · , xT ) ∈ RN×C

建立面向状态估计的 BiLSTM模块，假设给定时

间步长 T的量测数据矩阵 。

其中 N为节点数；C为每个量测节点特征维度，在

状态估计中值为 4，不失一般性可以为节点电压幅

值、节点电压相角、节点注入有功功率和无功功

率。BiLSTM网络模型如下：
  h⃗t = tanh(W2xt +W4 h⃗t−1+ b⃗o)

←
ht = tanh(W1xt +W3

←
ht+1+

←
bo)

（4）
 

Ht = h⃗t ⊕
←
ht （5）

h⃗t−1

←
ht+1

h⃗t

←
ht

b⃗o

←
bo Ht

⊕

式中： 、 分别为 t−1时刻前向隐藏层状态和

t+1时刻后向隐藏层状态； 、 分别为 t时刻前向

隐藏层状态和后向隐藏层状态；W1、W2、W3、W4 为

权重矩阵；tanh为激活函数，用于创建新的候选值

向量； 、 分别为前向和后向偏置向量； 为 t时

刻的输出值； 表示拼接操作。

将 BiLSTM网络模块嵌入 GAN，利用其序列前

后向输入特点，获取上下文信息，使得过去与未来

隐藏层的状态都可以进行递归反馈，从而能进一步

挖掘当前量测数据同过去与未来时刻量测数据的

内在联系，以充分利用特征数据并提升模型补齐数

据精度。
 

1.2    基于 GAT-BiLSTM 模型的状态估计方法

图神经网络（graph neural  network,  GNN）近年

在拓扑相关领域得到广泛应用。 GNN采用消息传

递机制，在每一层卷积中，节点能够聚合其相邻节

点的特征信息。在电力系统分析中，利用 GNN将

电网拓扑嵌入节点特征，能够更有效地处理电网拓

扑等非欧几里得数据[28-30]。但在配电网状态估计

中，配电网拓扑变化频繁，GNN在拓扑变化时聚合

特征精确度不高，导致状态估计性能下降。在配电

网中不同量测点的重要性不同，例如辐射型网络中

根节点、T接网络中联络节点的重要性更强。基于

配电网的节点物理特征，GAT 能够为不同的相邻量

测点分配差异化的注意力权重[31-33]。当配电网拓

扑改变导致邻接关系变化时，GAT 可自适应地调整

这些注意力系数，从而实现对拓扑频繁变化的自适

应，并展现出良好的泛化能力。

建立面向状态估计的 GAT网络 ，假设 xi 和
xj 为两个相邻节点，pi、pj 为两节点对应的特征向

量，通过权重矩阵 Wi、Wj 将特征映射到同一空间以

计算注意力得分。
 

ei, j = σ1(Wi pi⊕W j pj) （6）

σ1式中： 为 LeakyReLU激活函数；ei, j 为注意力得

分，表示节点 j对节点 i的重要程度。

ai, j

对节点 i的相邻节点集合 Ni 分别计算注意力

得分后，再进行归一化和融合，得到注意力权重 ：
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ai, j = Softmax
(
ei, j

)
=

exp
(
ei, j

)∑
j∈Ni

exp
(
ei, j

) （7）

式中：Softmax为归一化指数函数。

Pi

对节点 i相邻节点特征进行加权求和，得到节

点 i的最终特征向量 ： 

Pi = σ2

(
1
K

∑
j∈Ni

ai, jW j pj

)
（8）

σ2式中： 为 ELU激活函数；K为 Ni 中的节点个数。

GAT网络结合 BiLSTM进一步提高了状态估

计精准度和拓扑泛化性能。 

2    基于 BiLSTM-GAN-GAT 模型的状态估

计框架和流程
 

2.1    状态估计框架

H ′
t

P ′i

基于第 1章所提方法，综合考虑配电网状态估

计数据补全、拓扑泛化、时空相关性等特点，设计

图 1所示 BiLSTM-GAN-GAT模型。BiLSTM-GAN-
GAT模型主要由 BiLSTM+生成器、BiLSTM+判别

器、数据处理层、两层 GAT、两层 BiLSTM、GNN
连接层等构成。图 1中， 为两层 BiLSTM的输

出； 为两层 GAT的输出。
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图 1   BiLSTM-GAN-GAT 模型框架
Fig.1    BiLSTM-GAN-GAT model structure

 

生成器层输入为遵循高斯分布的随机噪声序

列和缺失部分信息的量测数据。首先，使用一层包

含 128个神经元的 BiLSTM，设定其时间步长与输

入序列长度完全一致，以确保模型能够有效捕捉序

列的双向依赖性。随后，将 BiLSTM的输出传递至

一个全连接层，以进一步提取与聚合特征。此过程

中，通过 4层全连接层的递进处理，并结合 Reshape
层重新调整张量的形状，以满足后续处理的需要。

为解决梯度消失问题，在各层级间嵌入批量归一化

层。此外，还引入 Dropout层，以 0.2的概率随机丢

弃部分神经元，从而防止过拟合。最后 ，通过

tanh激活函数对最终输出张量进行处理，确保生成

的数据维度与原始输入序列一致。

判别器层与生成器类似，同样由一层包含

256个神经元的 BiLSTM和 4层全连接层组成，在

层级之间使用 Dropout层，但不同的是判别器删除

了批量归一化层，使得输出数据的概率分布更广

泛，更利于提高识别数据真假的准确率。最后，通

过 Sigmoid激活函数，输出真实数据的概率。

数据处理层负责将不同历史断面下量测信息

和拓扑转化为 G（X, A, E）形式。X为电网节点的

特征矩阵，表示电网的节点信息；A为邻接矩阵，用

于描述电网拓扑；E为边权矩阵，包含电网的支路

信息。

在第一层 GAT中，计算节点 i与其一阶相邻节

点的空间注意力权重，在第二层 GAT中，计算节点

i与其二阶相邻节点的空间注意力权重。两层

BiLSTM可以充分学习量测信息序列多层次时间特

征，然后将两部分特征拼接，最后由 GNN全连接层

输出系统的节点电压幅值和节点电压相角。由于

状态估计本质上是一个回归问题，所以采用 Leaky-
ReLU作为全连接层的激活函数，以防止非线性映

射后神经元消亡，从而加快模型训练速度。具体公

式如下： 

ŷ = σ1(W(H ′
t ⊕ P ′i )+ b) （9）

ŷ式中： 为全连接层输出；W为权重矩阵；b为偏置量。 

2.2    状态估计流程

文中所提基于 BiLSTM-GAN-GAT模型的状态

估计流程如图 2所示。

具体步骤如下。

（1） 数据准备。选取不同历史时间断面下不同

拓扑的配电网量测数据构建数据集，并按照

9∶1的比例划分为训练集和测试集，训练集用于训

练 BiLSTM-GAN-GAT模型，测试集用于评估模型

的性能。不失一般性地，节点特征为包括节点电压

幅值、节点电压相角、节点注入有功功率和无功功

率的 4维向量，边特征为包括支路有功功率、支路

无功功率、支路导纳的 3维向量。考虑量测数据量

纲的异构性对模型训练的影响和过拟合现象，对数
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据进行归一化处理，具体公式如下： 

u ′k =
uk −min

k
uk

max
k

uk −min
k

uk
（10）

u ′k uk式中： 为第 k个量测量归一化后的值； 为第 k个
量测量的真实值。

（2） 模型准备。在模型训练前，确定 BiLSTM-
GAN-GAT模型的超参数，包括生成器、判别器、两

层 GAT和两层 BiLSTM。两层 BiLSTM分别有

64个和  128个隐藏节点，对应两个 Dropout层，丢

弃概率分别设置为 0.2和 0.3，同时可除去一些不重

要的特征，且 BiLSTM中 LSTM层数为 3。采用

Adam优化器，学习率设定为 0.001，训练轮数为 50，
批次大小为 128。

（3） BiLSTM-GAN-GAT模型离线训练。输入

训练数据集，首先固定判别器、调整生成器参数以

降低损失函数值，然后固定生成器、训练判别器以

提高准确率，当两者损失函数值趋于稳定时，表示

GAN部分训练完成；通过多层 GAT和 BiLSTM，深

入挖掘节点特征的时空关联性，利用全连接层将这

些信息转换为节点电压幅值与相角的预测。为了

评估模型的准确性，根据预测值与实际值的差异来

计算损失函数，并采用反向传播算法优化模型的权

重参数。损失函数选取均方差损失函数，公式如下： 

L =
1
M

M∑
m=1

(ym− ŷm)2 （11）

ŷm

式中：L为损失值；M为样本数量；ym 为样本 m的真

实值； 为样本 m的预测值。经过多次迭代训练，

最终构建适用于量测数据缺失和拓扑时变的

BiLSTM-GAN-GAT状态估计模型。

（4） 在线估计。将当前时间断面下的非齐全量

测数据和拓扑信息输入到训练好的状态估计模型

中，模型会自适应进行数据补齐并在线计算得到系

统的状态量。 

3    算例分析
 

3.1    算例设置

算例基于 IEEE 118节点配电网系统，基准电压

为 12.66 kV，基准功率为 10 MV·A。将卷积神经网络

（convolutional neural network, CNN）、GAT和 GAT-
BiLSTM算法作为对比方法，以验证文中算法在量

测数据缺失和拓扑时变情况下的状态估计结果的有

效性与优越性。为模拟配电网真实运行状态变化，

文中负荷曲线来自某实际电网连续 400 h的运行数

据，以 20 min为一个采样周期，共可获得 1 200组采

样数据，包括每个节点的电压幅值、电压相角、注入

有功功率和无功功率的量测值。将前 1 080组数据

作为训练集，后 120组数据作为测试集。文中以潮

流计算得到的多断面数据作为真值，添加 (0,
0.01)的正态随机误差模拟量测数据，将其与离线采

集的拓扑数据结合生成多断面数据集，以相角为标

签进行损失函数计算，并通过训练得到模型。以此

为基础对 BiLSTM-GAN-GAT模型进行训练。

测试的硬件平台为 PC机 ，处理器为 Intel®
Core™ i5-10210U CPU @ 1.60 GHz，内存为 16 GB，
基于 Python软件的 Pytorch模块进行编程。

为更直观体现文中所提算法和其他算法的估

计性能差异，对估计状态量计算平均相对误差，具

体公式如下： 

δ =
1
U

U∑
l=1

∣∣∣∣∣ ĥk(l)−hk(l)
hk(l)

×100%

∣∣∣∣∣ （12）

δ ĥk(l)

hk(l)

式中： 为平均相对误差；U为总断面数； 为第

l个断面下第 k个状态估计结果； 为第 l个断面

下第 k个真实值。 

3.2    补齐数据的正确性验证和对比

为验证文中所提数据补齐方法的正确性，在数

据缺失比例为 20% 的情况下将文中算法与未补全

数据的 GAT-BiLSTM和使用常规 GAN补齐数据

后的 GAT-BiLSTM（记作 NGAN-GAT-BiLSTM）进

行对比，所得各节点状态估计结果如图 3所示。电

压幅值平均相对误差和电压相角平均相对误差分

别如表 1和表 2所示。

由图 3可知，当量测数据缺失时，GAT-BiLSTM
方法未对数据补齐，估计结果较大程度地偏离了系

 

开始

电力系统的实时
非齐全量测数据
及拓扑信息

对节点电压幅值、节点电
压相角、节点注入有功与
无功进行归一化处理

BiLSTM-GAN-

GAT模型

生成数据集并划分
训练集和测试集

训练集 测试集

训练模型 生成模型

当前断面拓扑下
状态估计结果

时间是
否结束?

归一化
处理数据

实时非齐全量测
数据及拓扑信息

否

输出状态
估计结果

是

结束

电力系统的历史齐全
量测数据及拓扑信息

补齐量测数据

图 2    基于 BiLSTM-GAN-GAT 的状态估计方法流程

Fig.2    Flow chart of state estimation method
based on BiLSTM-GAN-GAT
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统真实状态，估计效果较差；NGAN-GAT-BiLSTM
由于使用 GAN对数据进行补齐，平均相对误差较

GAT-BiLSTM有很大提升；而文中算法通过基于

BiLSTM改进的 GAN弥补了常规 GAN忽略历史

数据中时间序列信息的缺点，提高了补齐数据的精

度，在量测数据缺失的情况下仍可以估计获得高精

度的状态结果。

设定量测数据缺失比例为 20%、30%、40%、

50%、60%，计算各数据缺失比例下的电压幅值和电

压相角估计误差，如表 3和表 4所示。

由表 3和表 4可知，当量测数据未完全缺失

时，文中算法可以估计得到较高精度的状态结果；

当缺失比例达到 20% 时，幅值平均相对误差为

0.248 6%，相角平均相对误差为 0.311 5%，但当缺失

比例达到 60% 时，幅值平均相对误差为 3.587 4%，

相角平均相对误差为 3.579 1%，因此文中所提方法

的估计精度随着数据缺失比例的升高而下降。一

般缺失比例在 30% 左右时可以满足工程应用要求。 

3.3    拓扑时变下的正确性验证和对比

由于实际配电网运行中拓扑随时间频繁变化，

因此，为验证文中算法在拓扑时变下的优越性，对

完整拓扑下的状态估计进行模拟仿真，并与 WLS、
CNN、GAT和 GAT-LSTM进行对比，所得各节点

状态估计结果如图 4所示。各算法在完整拓扑下

估计的电压幅值平均相对误差和电压相角平均相

对误差分别如表 5和表 6所示。

由图 4可知，各算法在 IEEE 118节点系统完整

拓扑下均能实现状态估计，但由于文中算法深入挖

掘量测量和状态量的时空关系，与其他算法相比，

具有更好表现，对比 WLS和 CNN，幅值估计精度分

别提升 39.3% 和 35.1%，相角估计精度分别提升

35.4% 和 29.0%。

进一步随机模拟表 7所示的 4种配电网拓扑变

化场景，每个拓扑选取 20个不同时间断面下的量

测数据。以随机选取的节点 20为例进行分析，并

与WLS、CNN、GAT和 GAT-LSTM进行对比，具

体结果如图 5所示。各算法在拓扑时变下估计的

电压幅值平均相对误差和电压相角平均相对误差

分别如表 8和表 9所示。

 

表 3    各数据缺失比例下电压幅值估计误差

Table 3    Voltage amplitude estimation errors at
different proportions of incomplete data

 

数据缺失
比例/%

节点电压幅值
平均相对误差/%

20 0.248 6

30 0.417 2

40 1.034 2

50 1.689 4

60 3.587 4
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图 3    量测数据缺失下 118 节点系统各节点状态量

Fig.3    The state variables of 118-bus system
with incomplete data

 

表 1    数据缺失下电压幅值估计误差

Table 1    Voltage amplitude estimation errors
with incomplete data

 

算法
节点电压幅值

平均相对误差/%

文中算法 0.248 6

GAT-BiLSTM 4.950 7

NGAN-GAT-BiLSTM 0.845 3

 

表 4    各数据缺失比例下电压相角估计误差

Table 4    Voltage phase angle estimation errors at
different proportions of incomplete data

 

数据缺失
比例/%

节点电压相角
平均相对误差/%

20 0.311 5

30 0.448 7

40 1.088 1

50 1.568 4

60 3.579 1

 

表 2    数据缺失下电压相角估计误差

Table 2    Voltage phase angle estimation
errors with incomplete data

 

算法
节点电压相角

平均相对误差/%

文中算法 0.311 5

GAT-BiLSTM 6.343 6

NGAN-GAT-BiLSTM 1.258 3
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由图 5可知，不同时间断面下某条支路断开，

WLS和 CNN估计精度明显下降，GAT由于可以自

适应拓扑空间变化，精度较前两种算法高；GAT-
LSTM进一步结合时空，生成更为全面的信息特征

表达式，在估计精度上较前 3种算法有明显提升。

而文中提出的 GAT-BiLSTM既考虑自适应拓扑空

间的变化，又在时间维度上双向提取信息特征，深
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图 4    IEEE 118 节点系统完整拓扑下各节点状态量

Fig.4    State variables of IEEE 118-bus system
with complete topology

 

表 5    IEEE 118 节点系统完整拓扑下电压幅值估计误差

Table 5    Voltage amplitude estimation errors of IEEE
118-bus system with complete topology

 

算法
节点电压幅值

平均相对误差/%

文中算法 0.108 6

WLS 0.178 9

CNN 0.167 4

GAT 0.141 7

GAT-LSTM 0.127 8

 

电
压
相
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ad

电
压
幅
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图 5    拓扑时变下节点 20 状态估计情况

Fig.5    State estimation of node 20 in the
time-varying topology

 

表 6    IEEE 118 节点系统完整拓扑下电压相角估计误差

Table 6    Voltage phase angle estimation errors of IEEE
118-bus system with complete topology

 

算法
节点电压相角

平均相对误差/%

文中算法 0.146 4

WLS 0.226 5

CNN 0.206 2

GAT 0.194 9

GAT-LSTM 0.179 3

 

表 7    拓扑变化场景

Table 7    Topological time-varying conditions
 

时间断面 拓扑

1—20 拓扑1：支路2—4断开

21—40 拓扑2：支路23—24断开

41—60 拓扑3：支路76—77断开

61—80
拓扑4：支路7—8、支路
33—34、支路58—59和

支路91—92断开

 

表 8    IEEE 118 节点系统拓扑时变下电压幅值估计误差

Table 8    Voltage amplitude estimation errors of IEEE
118-bus system with time-varying topology

 

算法
节点电压幅值平均相对误差/%

拓扑1 拓扑2 拓扑3 拓扑4

文中算法 0.125 3 0.143 5 0.133 7 0.154 8

WLS 0.875 6 2.346 2 4.782 5 7.894 9

CNN 0.759 7 2.234 6 4.652 1 7.459 3

GAT 0.366 4 1.519 9 1.957 4 4.881 6

GAT-LSTM 0.164 5 0.189 4 0.177 8 0.349 6

 

表 9    IEEE 118 节点系统拓扑时变下电压相角估计误差

Table 9    Voltage phase angle estimation errors of IEEE
118-bus system with time-varying topology

 

算法
节点电压相角平均相对误差/%

拓扑1 拓扑2 拓扑3 拓扑4

文中算法 0.151 4 0.167 3 0.162 3 0.181 2

WLS 1.046 9 1.515 6 1.197 4 4.783 6

CNN 0.873 5 1.375 3 1.084 9 4.531 7

GAT 0.423 5 0.538 5 0.637 5 3.872 3

GAT-LSTM 0.201 9 0.203 2 0.246 7 0.775 1
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入挖掘学习量测量和状态量的时空关联性，因此能

获得更精确的状态估计结果。当断开支路数增加

时，文中所提算法精度略有降低，但仍在可接受范

围之内，且较其他 4种算法有明显优势。 

3.4    分布式电源接入后状态估计的正确性验证

在编号为 41的节点处接入额定功率为 50 kW
的风力发电机，功率因数为 0.9；在编号为 87的节点

处接入容量为 40 kW的光伏发电系统，功率因数为

0.8。将分布式电源等效为 PQ节点，对各节点的状

态估计进行模拟仿真，并与 WLS、CNN进行对比，

所得结果如图 6所示。各算法估计的电压幅值平

均相对误差和电压相角平均相对误差分别如表 10
和表 11所示。
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图 6   分布式电源接入下 118 节点状态估计情况
Fig.6    State estimation of the 118-bus system with

distributed generation integration
 

 
 

表 10    IEEE 118 节点系统电压幅值估计误差
Table 10    Voltage amplitude estimation errors of

IEEE 118-bus system
 

算法
节点电压幅值

平均相对误差/%

文中算法 0.116 9

WLS 0.222 7

CNN 0.170 1

由图 6可知，分布式电源接入后，文中算法估

计得到的各节点电压幅值与电压相角均接近于真

实值，估计误差较 WLS和 CNN算法更低，在一定

程度上验证了文中算法对含随机功率源配电网状

态估计的可行性和有效性。 

3.5    算法计算时间对比

传统的状态估计方法依赖雅可比矩阵的迭代

过程，以精确逼近所需的状态向量，然而，当系统复

杂度增加时，其计算量也随之显著增长。文中算法

引入数据驱动的思想，学习量测量和状态量之间的

潜在关联，无须对系统内部进行物理建模，显著提

升了系统在线评估效率。各系统完整拓扑下使用

WLS、CNN和文中算法估计的时间如表 12所示。
 
 

表 12    各系统完整拓扑下估计时间比较
Table 12    Comparison of estimation time values

under the complete topology of each system
 

测试系统
估计耗时/s

WLS CNN 文中算法

IEEE 118 0.007 3 0.013 4 0.016 8

IEEE 300 0.058 5 0.015 9 0.018 1

IEEE 2786 0.484 6 0.018 2 0.021 2

IEEE 8449 2.923 9 0.020 7 0.022 6

IEEE 13984 5.834 9 0.021 5 0.023 4
 

由表 12可知，对于较小规模的电力系统，文中

算法在估计效率上的优势并不显著。然而，随着系

统规模的逐步扩大，文中算法的估计耗时却保持相

对稳定，未出现显著增长。相比之下 ，传统的

WLS算法在处理大规模系统时，其估计时间显著增

加。文中算法由于引入改进的 GAN以生成缺失量

测数据，计算量大于 CNN，致使计算时间高于

CNN，但仍在可接受范围之内。以 IEEE 300节点系

统为例，文中算法在估计耗时上较 WLS缩短了

69.06%。在面对如 IEEE 13984节点的大型系统时，

算法仍然高效，表明文中算法在大型电网状态估计

中具有较好的可行性。 

4    结论

文中提出融合改进 GAN与 GAT的状态估计

模型。该方法能学习量测量和状态量之间复杂的

时空耦合关系，实现在拓扑时变下的准确状态估

计。通过在 IEEE 118节点系统下进行算法仿真，得

到以下结论：

（1） 文中将 BiLSTM嵌入 GAN，能够充分学习

历史量测数据的前向和后向时序信息，增强模型的

非线性拟合能力，提高补齐数据的精度，且估计精

 

表 11    IEEE 118 节点系统电压相角估计误差

Table 11    Voltage phase angle estimation
errors of IEEE 118-bus system

 

算法
节点电压相角

平均相对误差/%

文中算法 0.154 1

WLS 0.250 9

CNN 0.196 2
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度随数据缺失比例提升而降低，一般在缺失比例

30% 左右时仍可以满足工程应用要求。

（2） 将 GAT和 BiLSTM引入数据驱动状态估

计模型，自适应地根据配电网拓扑变化改变节点间

注意力系数，充分学习量测数据前向和后向的时序

信息，生成更全面的时空信息表达式。

（3） 文中算法在新型配电网状态估计中有较好

的应用前景，与传统 WLS算法相比，在保证计算精

度的同时，能够大幅缩短大型电网状态估计中的计

算时间，满足在线应用要求，在分布式电源等随机

功率源接入后也表现出良好的性能。
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Distribution network state estimation by fusing improved generative
adversarial network and graph attention network

ZHAO Qi,  TIAN Jiang,  XU Xiuzhi,  LÜ Yang

(State Grid Suzhou Power Supply Company of Jiangsu Electric Power Co., Ltd., Suzhou 215004, China)

Abstract：The distribution network is  connected to  new elements  such as  distributed new energy and controllable  resources,
and the traditional state estimation model is faced with new problems such as incomplete measurement information, frequent

topology changes of  the distribution network and load time series  fluctuations,  which lead to  reduced accuracy of  the model

estimation. Therefore, a method of distribution network state estimation by fusing improved generative adversarial network and

graph  attention  network  is  proposed  in  this  paper.  Firstly,  topological  parameters  and  measurement  information  in  different

historical time sections are selected to generate data sets. The incomplete measurement information is filled by introducing the

bidirectional long short-term memory (BiLSTM) network into the generative adversarial network. Secondly, the graph attention

network is used to capture the spatial dynamic relationship between the nodes adaptively, and the bidirectional long short-term

memory  network  is  used  to  fully  excavate  the  time-coupling  relationship  of  the  cross-sectional  sequence  information  in

different time sections. These networks are concatenated to form the spatiotemporal feature expression of the measurement to

the state, and the state estimation model of the improved graph neural network is obtained. Finally, simulation experiments are

carried out in IEEE 118-bus system, and compared with other neural network algorithms such as convolutional neural network

and graph attention network. The results show that the proposed algorithm has better performance in the case of missing data

and time-varying topology than other neural network algorithms.

Keywords： state  estimation;  generative  adversarial  network;  graph  neural  network;  attention  mechanism;  bidirectional  long
short-term memory (BiLSTM) network; space-time modeling
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