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PERR VT 5 0B S, X AR B G L X 2 R e B AT
HAREE L,

H i, IR/ —3f (weighted least square, WLS)
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e R PO 1 2 Ah A0, S o Al S R 30 A i g
I, Koy An 2B BE VR Y Hh ) 32 P45 DR 255 1) 30
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J5 T, SCHR [14-151F) A2 5%t 5t 99 2% (generative
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PRAG R C R Y B L R A AR, B9 GAN 7R L ) R 4¢
HRoRN B AT AT s ZERS R AT T, SCRik [16-17]
) HH B ] 4 J8 1 12 12 (bidirectional long short-term
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23 [A]REAE, B o B0 B Sh A R X # MR AR 1 3 1
HE T o
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K G(v) Az s 2 T 0 75 o) & v A2 Y O i
B D(-) R 0 5 2% %5 B4 B S PR B PE AN 45
E, o ()RR L p, 53 A1 B MR FS 1) i v $EATIHRL Y
F) 2 B REL Lo 2
Lis=~E. » o (D(@) +E, 0 (D(G¥))) (2)
A E o ()R XE 2 pos, A3 A i B AR AR 2
FT TR B I B R
AE LA VR A PO A AR TESE, st 48NS H
RS 22 6 19 2 B 3R 5| S A8 0 3K B R IR A 02,
HH bR % (G.D) A
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AFARL A 12 000 5 40 LA TR 8 1 it i, A 40 ) e e A IX 3
Az B 5 SR, DA 75 b 5 1 i 4 i
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JE A A A B 5 0 A v, R T A 3RS B ]
B8 e LA KR 5 2R 1 9 s Y,
A3 R AN SRR RS . K 48 3190 12 (long short-
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TG, i 1 PR 8 R MR {5 B TS L Y
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12 T GAT-BILSTM BRI At 77 5%

& #1224 (graph neural network, GNN) iT 4F
TEARFM 4TS B 2 BT . GNN SRS B
L, 70— R B, 45 5 AR B A FU AR T
SHEIEAS A . e S R G h, B GNN %
L I AT SRR, RE A S A A0 b 34 e 1 4
PR RROL B AR P50 L (ETE T H IR 25
o, T EL 4R NS AL, GNN 7E 4R FME (LT 3R A
BRI BES 5, SECRAS A THERE R, 7ERCH
P S [ 0 1 B S ] 06 7 ) 45 o
AT T B a1 I R, T
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Fig.1 BILSTM-GAN-GAT model structure
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ik, SR 5 B PR A RRAE P42, B f5 B GNN 2% 422
By s R Gy S R R A SR, T
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i Fb Y TC R ) 0 A HE R B B AR, O R R
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GRS E
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31 EHIgEE

I T TEEE 118 35 55 it i X R 40, e R
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i, Lh 20 min Jy—>RAE R, EAT4RAS 1200 41K
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J Rl % BILSTM-GAN-GAT BRI gE4 7111145

W 1 6 4 65 PC ML, 40 38 2% K Intel®
Core™ i5-10210U CPU @ 1.60 GHz, IN7£ K 16 GB,
$LF Python 14 1) Pytorch #EHL 1 T4 i
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1 | (D) - (D)
Dl
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Sk 36 UE S BT BB #0557 VA I E A M, 7ESK
P2k L 20% s B0 R SCh R S ok kb4
AR GAT-BILSTM FI{f HI % F GAN #b 5% %5 4l
JF i) GAT-BILSTM(iC #F NGAN-GAT-BiLSTM)
TP, B AR5 0 mURES AR T A5 R 3 s,
S 5P 349 AR X35 22 AT S A SF 38 AR G R 22 4
AN 1 gk 2 Fios.

L 3 ], Y s B2k 15, GAT-BILSTM
Ji AR B A0, Al 25 R KRR B bR 2 T &R
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x1 BERETREERERITRE

Table 1 Voltage amplitude estimation errors
with incomplete data
ek 0.248 6
GAT-BiLSTM 4.950 7
NGAN-GAT-BiLSTM 0.845 3

xR 2 BEHRERTEREEBMGITHRE
Table 2 Voltage phase angle estimation
errors with incomplete data

i WA Fﬁfﬁﬂﬁa
SRR %
SR 03115
GAT-BiLSTM 6.343 6
NGAN-GAT-BiLSTM 1258 3

G5 HSOIRAS, AT RUR 88 2% ; NGAN-GAT-BILSTM
BT GAN X5 47 %h 55, P A iR 22 4%
GAT-BIiLSTM A AR K 48 Fh5 1y 3¢ rp 5803k 5 o 56
BiLSTM 2 i GAN 7R £ T % #L GAN Z g [ 2
B T R S B B, B TR TR RS
B, AE S B SR A O AT T LA 3R A SRS
FE PR S5 3

B 1 B B LB 20% . 30%. 40%.
50%. 60%, T HAR B LB T (4 L R A A
JEAR AR ZE, AN 3 13k 4 Fs .

H2E 3 FIEE 4RI, 4 o 0 508 R 52 4 Bk 2k
B, SR B T DA T A5 20 A R R B R AR A R
2B LB SRR 209% B, R (E S XA R 25 R

F3 FBEIRGRKILH TREREGITHRE
Table 3 Voltage amplitude estimation errors at
different proportions of incomplete data

Bl ek T AL R AR
LL A% IR R 22/%
20 0.248 6
30 04172
40 1.034 2
50 1.689 4
60 3.5874

®4 BEERKILGTREBRABMGITRE

Table 4 Voltage phase angle estimation errors at
different proportions of incomplete data

LGS T LR AR SR
LE /% THIAE TR 2%
20 03115
30 0.448 7
40 1.088 1
50 1.568 4
60 3.579 1

0.248 6%, HHFAEIAI AT R 22K 0.311 5%, {H Y5k
FE AR 3 60% I, BT Y AH X 158 25 Ky 3.587 4%,
AHAR V- SRR IR 22 K 3.579 1%, PR S b B4 7 v
A T4 T B A 50 i 2k E ) i T e T R, —
JBEBRI LU BITE 30% 224+ st AT LA A TRE I FH oK .
3.3 AN THEREIEFIRTLL

FH T S BT L 2 A7 v 4 B s 1) A AR 4k,
PRI, A 36 UE SC FR R VA ZEFR NI AR R A L A, X
SEAEARFN T IR S T AT R B, I 5 WLS,
CNN. GAT H1 GAT-LSTM #E47 %] [, F 48 4 5 i
REAMTTEE R WA 4w, FRIEAEEEINT
A T A F R 8 11 349 AR 6 152 22 0 AR £ S 29 40
PR 2 NS 5 FIZE 6 iR

Hy P 4 RIS, 4538551 TEEE 118 95 55 R 4 52 %
FN N RE S BURASAG T, (Bt O IR ALS
Pt 2 0 S ADIR S S RS R, 5 IE AR H,
BA YR, X H WLS AT CNN, 8 {8 Ak 31k 2
B HETE 39.3% 1 35.19%, +H A Al 1145 BE 5 51 412 T+
35.4% 1 29.0%.

HE— A BELZE 7 B 1 4 FhC L 994 $ AR
1375, BN PR 20 S AS [a] B8] Wy i R A
DU . DABEHLGE B 5 85 20 R BIHEAT 50 B, -
5 WLS. CNN. GAT F1 GAT-LSTM Bt 47 %} kb, B
REEFANE 5 s o 25 S e dn Ah e 28 N A Y
L R 1 259 L X6 152 25 0 R K 3 S 2 4 X 15 22
Arnge 8 fEE 9 Fios.
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Fig.4 State variables of IEEE 118-bus system
with complete topology

x5 IEEE 118 TERSRERIITHEREMITIRE

Table 5 Voltage amplitude estimation errors of IEEE
118-bus system with complete topology

i Rl %Ema;ﬁ
PN R 2%
ek 0.108 6
WLS 0.178 9
CNN 0.167 4
GAT 0.1417
GAT-LSTM 0.127 8

R 6 IEEE118 TEARSZEAIITHERAMITREE

Table 6 Voltage phase angle estimation errors of IEEE
118-bus system with complete topology

i T IEAA
PSR R %
BEE RS 0.146 4
WLS 0.226 5
CNN 0.206 2
GAT 0.1949
GAT-LSTM 0.179 3

R7T HEITUGE
Table 7 Topological time-varying conditions
FIF [ b T EZEEN
1—20 e 2 H2—aWiT
21—40  Fh2: LPR23—24HF
41—60  FiFh3: L HT6—TTWITF

b4 K78 ik
61—80 33—34, L p%58—59FI
%9 1—92 T T

5 et Ll
S 1000 s | et LWL
~ : k :l 8]
g 0.975 ! :|‘, Il.' '.“:
— I g, WA v
0950 ' i
0 20 40 60 80
5 BT
() 17 2520 HL R R AR
0.004 - . : :
EZEE 10 N 72 E{ NI 7CF | R o E{
bl 1 1 1
ﬁ 0.002 L R 1
E | RN T, el
g 0F A ' ' \“)‘/:‘u !
—0.002 . . H s
0 20 40 60 80
I} ) 7
(b) 7 20 AH £
WLS CNN GAT GAT-LSTM

B - Bl
5 HIMHETT R 20 KEM[ITHER
Fig.5 State estimation of node 20 in the
time-varying topology
%8 IEEE 118 TR ASHIMETRIEREMITIRE
Table 8 Voltage amplitude estimation errors of IEEE
118-bus system with time-varying topology
9 A LT MR T R A X 2R 22 /%

WIdL Ah2 I3 i
SCREYE S 01253 01435 01337 01548
WLS 0.8756 23462 47825 7.8949
CNN 0.7597 22346 46521 74593
GAT 03664 1.5199 19574 48816
GAT-LSTM 0.1645 0.1894 0.1778 0.3496

®9 [EEE M8 TRAGSHIHNETRERAMBITRE

Table 9 Voltage phase angle estimation errors of IEEE
118-bus system with time-varying topology

9 A5 R AR A X R 2%
Wb dEEh2 N3 b
SCPEEE S 01514 01673 01623 0.1812
WLS 1.0469 15156 1.1974 47836
CNN 0.8735 13753 1.0849 45317
GAT 04235 05385 0.6375 3.8723
GAT-LSTM 02019 02032 02467 0.7751

FH LS AT, AN [R] R (i) D I 2% S % B
WLS HI CNN i i+45 B W2 T %, GAT H TR LL A
T N Fb A3 TR Ak, A RE BT P R R GAT-
LSTM it — 45 G i 25, Az iU Ry 42 1 (45 B R AIE
Fh K, ARG B AT 3 A A B AR T
M SCH 42 HU A GAT-BILSTM BE % 1& [ 1& b i Fh 25
() A8 A5 Ak, SUAE B[] 4 B 1 00 $2 UM BURR IR, TR

ik
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Fig.6 State estimation of the 118-bus system with
distributed generation integration
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Table 11 Voltage phase angle estimation
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Distribution network state estimation by fusing improved generative
adversarial network and graph attention network

ZHAO Qi, TIAN Jiang, XU Xiuzhi, LU Yang
(State Grid Suzhou Power Supply Company of Jiangsu Electric Power Co., Ltd., Suzhou 215004, China)

Abstract: The distribution network is connected to new elements such as distributed new energy and controllable resources,
and the traditional state estimation model is faced with new problems such as incomplete measurement information, frequent
topology changes of the distribution network and load time series fluctuations, which lead to reduced accuracy of the model
estimation. Therefore, a method of distribution network state estimation by fusing improved generative adversarial network and
graph attention network is proposed in this paper. Firstly, topological parameters and measurement information in different
historical time sections are selected to generate data sets. The incomplete measurement information is filled by introducing the
bidirectional long short-term memory (BiLSTM) network into the generative adversarial network. Secondly, the graph attention
network is used to capture the spatial dynamic relationship between the nodes adaptively, and the bidirectional long short-term
memory network is used to fully excavate the time-coupling relationship of the cross-sectional sequence information in
different time sections. These networks are concatenated to form the spatiotemporal feature expression of the measurement to
the state, and the state estimation model of the improved graph neural network is obtained. Finally, simulation experiments are
carried out in IEEE 118-bus system, and compared with other neural network algorithms such as convolutional neural network
and graph attention network. The results show that the proposed algorithm has better performance in the case of missing data
and time-varying topology than other neural network algorithms.

Keywords: state estimation; generative adversarial network; graph neural network; attention mechanism; bidirectional long

short-term memory (BiLSTM) network; space-time modeling
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