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FRA, AN, 23|, BRR, KB, FiRE
(1. W1 Tl A0 5 TR, WIS Bk 412007;
2. [ 4 2 A7 B R BRI AE L 432 71, R #RVH 412000)

B EAACA R T @I SR, L AL BB F R AAS e, ST R AL LA
FAFAEL §i AT Z 08 B A 69 R K R, SFECTRMME R R, xR P AR —FP A T A Z 484 B 45 JE (meteorological
similar day correction, MSDC) 7= # % % #& 4,4t (improved parrot optimizer, IPO) £ %~ f#% (decomposition-based linear,
DLinear) % B 77 & /) fi #7 FUmAE A . 4 835 JF Logistic Be 4. B & & & Kok #2459k 3) 44 % TPO I DLinear # %
F AT HhAL, KRG d DLinear 32 BUEAE 4 &) 2 M Fo A8 B AF AR, 5% U5 18 33 bo A &, R A A BR K JE 35 16 OF 71 4 FROAA,
7% % T IPO-DLinear-MSDC #) B &7 &, 77 f 47 TR AR AL . R 2024 F 6 A £ 10 A # ki 3 X & & Jy 5 35 2%
4 BE 4745 B 47, IPO-DLinear-MSDC #2784 th 7 35 463+ B 4% Z (mean absolute percentage error, MAPE) | 3t &
FH R 5 A % 4.67%.0.833, 4825 T IPO-DLinear &5 PO-DLinear #: %, MAPE % %1 T T 0.83 A F & 4. 14348
28R 5 #1439F T 0.074,0.125,
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(gated recurrent unit, GRU) ™ | B ] %5 FH o £ 10 1),
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CNN) PTA AR AR T o 45 £ 22 R AR ) A H
E— A 4 TR R Sk (1814 H TR
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BiLSTM) i 25 [ 25 (1% ¥, 7 25 ¢ S 300 67 Ay 0003000 A5 751

K A8 B Bk A B 0 A8 . SCRR L1914 i3
HeT 58 AR A AN 43 A BILSTM ) 45 1) 12
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2 H bRl DASR T S50 PR B, (X T4 e R HAH O
PE AR BHE A7 — 2 BRI o SCHRI21048
CNN-X [ ] 4% 1 ¥4 5. It (bidirectional gated recur-
rent unit, BIGRU)-Attention Tl #5 %4, BiGRU # %
7 GRU i) B [1] 5 51 B AN 2L, (HL Bl /0 X A5 A0 540
(F S, ME LAAE — 5 I [0 ] N A5 B S D0 A o STk
(22138 335 44 i = PRS2 B I 28 52 1L 47 fir 119 4] 25
TIN5 2248 T o BT % 0 L Pk A S A A T 2k 43
fi# (decomposition-based linear, DLinear) ** J&& /5% H! 3
Keyfumse )y, HAE 2 7e T456 1T % 19k
A& BUBF RSy, il T 5 2 E A i b B R, T
R FH S B T 1k 43 i) T 0 5 RN 22 5T PR AR 43 o
555 2 24 BUAH HE, DLinear 78 ff 35 = 700 RS
(R RN, ARy L A SR ATV .

ORI B I R A% PR 48 2 R A (1Y) il 25
(), % 31 4> Jmy e 0 i sl 42 i B LA Y 25 2R, BRAR
58 1) 30 M, B AR AN (] 1 ) SR 24 B 2% R i
0% 3 1 1L (parrot optimizer, PO) vk P4 | 5 14 {)p
fk.(pied kingfisher optimizer, PKO) % | JfR 46 48
R 1 (sparrow search algorithm, SSA) %5, ik [26]
FIFH SSA Xif A8 7315 25 43 i (variational mode decom-
position, VMD) #1788 2 5 T8, P45 5040 v ) 12
B o i R Z2 A SRR A3 DL S G Bb o3 B B0 R
fit. SCHk (27132 R REDLAE (particle swarm optimi-
zation, PSO) X VMD Hh 7% 3 5 - Fl 45 i RUBE iR 47
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SC Hp T S RS f) K (improved parrot opti-
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1F (meteorological similar day correction, MSDC )45
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Table 1 Correlation coefficients between load and
meteorological characteristics
SLHHE ARG R KL
AR -0.084
PAsad 0.51
R 0.87
AR —0.83
KIRE 0.21
R K -0.13
| 0.022
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RFHIE
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T
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(1) Logistic B HIGLFIREALE . 1E PO 5335
o, WA R Z AR T R R e AR
B Rk AR T EE TR SR
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THa R Rie ). BUEER T
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TR A1, DT (A A AR S8 R AT A R0 JRy T 1
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PRUE S 25 e B A S i B8, ot A 7 L 0T 9 B S ik
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P Yoo I 24 BRI 5 Yy o8 728 5 5 B S O 1 5
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FIRRER . Rastrigin pRECE—> LR ) Z 040 R]
A E T AR R e . HE R IA A
R AR R A IME, I BT cos (2mx,) T Y R 4541
., PRECEAT A0k sh 45 h, FBUR A S A
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S pe P A S R, DR E R B = 1 n . e R
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Fig.2 lterative convergence
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DLinear & — & Jy i [8] F 51 5000 52 31 H.fa] i
R LR . HAZO BURTE T A 272
gt I ] 3 B 508 A DA A AR N2 1 O, O
X 33X PR 4 i) A T A, i e T 45 SR AT 2
B AR R AR B . 0 5 S B i
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B 3 DLinear &#4
Fig.3 DLinear structure
& DLinear B84 th, 5 51 53 fifk il 3ok 7% 2~ 1 52
Mo BARMF, 4 E—DIEFH X, 5%
PR TR AR B Xiena o

1 E-1
Xtrend = E Z Xi—i ( 15)
i=0

GaVG RPN OVSE® 22 ) - RN AN N i PO B U £ £ (SR
B3P 90 v B B e B, S R S B,
TSR PP 2 25 B 45 2 2 1R B X cason:
Xieason = X = Xirend (16)
G ik I P9 A B 3 R 2 Y i g3 5 i) e o 2
PEJZ AT AT o X T A4 o3, B E SCAH
JO7 R 2 P 7 4

A

Xtrcnd = WXtrcnd + bt ( 17)
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A

Xieason = WiXoeason + by (18)
P Kiena s Kicason 70 1 N LR AR B I (1) 7 S mi 4 A
ZEATPE RS 5 by by SR I ) i 0
e 2%, DLinear £5 B4 4 34 Bk o0 01 2295 1 Bl o9
AT S A T2 A, A5 3R A A T X -
X = Xpona + Xecwson (19)
Jy T WA # A4k DLinear A5 %89 it 31 Z5ak B2, 16
BEEMBSHECEE ., ARMNESHEIE S
3 5 W AR WAL S B S TR EE . DL R 2 —
SEOCHE Y S AR, AR AL I st B P
e PEAEH :
(1) KK/ (batch size, BS), 4] 45 7 B 57
F TR A S
(2) W] 25K (time step, TS), #§ 45 Ui A S 4
AU S P A B . B TS AT DA B K
B[] 90 Bl P A6 DG 2R, TR e A TS B3 T
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LR Al B R B ZAFR0E, /My LR W A] g 30|
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2.4 IPO-DLinear-MSDC A& 1Ay
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BrBe—: ¥ 2% BS, TS, LR, LP WK{E A 15 &
3 #, Logistic BT 1A L BGRE B RENL B, [FIA R A
WEIE 0t S48 T, a3 R AR S SR AR
S o7 B WSCBIONS B, i th BB S0 e A

B B s W 28 b oA VA — TR A B S A B
B Z$5 1 DLinear H', DLinear 2 H 2545 Ml 4>
ARy, 2t 25 )20 B A .

BB = B O H SR8 5 T L g s &
W EG M 8 xS A5 de A AL H, $R 32 H % s
BT, 55 T0I S AT A A T I i 1 B A T 2

[ 4 Jy TPO-DLinear-MSDC #5 %I, H: rf SRk [ii]
&4 15 mins
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K 2024 4F 6 H 2 10 H IR AR b X HL ) 2L
SERVHL i B PE 4R L 2024 4F 10 A 31 H R A3
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10 A 31 B G800 K 2022 4F S G 80006 H <
SR F X, X 0 28 5 DA 2022 4F 5 67 i B
PR B AR H A 7 AT B, FES 2024 4F 10 H
31 H gy AR HE A T8 IE AL PR . BRE SR A [E] B Sk
15 min, 5K KFE 96 254

LY gy &5 2R SR F 44 J7 AR 4R 22 (root mean
square error, RMSE) . 4 4 X} 1% 2% (mean absolute
error, MAE) . 34 45 Xt [ 43 b 1% 22 (mean absolute
percentage error, MAPE) . Yt & 2% R* 1E I iFAhi 48
Pro ot RMSE X85 K i 2 URK, 8 AR 7 7E A% vy
H E AR, MAE J2& 10 {8 5 SEPR(E 2 8] 48 % 22
S0P SA(E, AT DU S BT {E 5 S PR AR Y R 22 K
/o MAPE $2 {115 25 iR X e 5], FH T PR A L st
NIRRT A PERE . R A S B 70 e 50090 72 S ) fige g
REJT, FH T s A AL G B
3.2 DLinear 85# 31

KA PO, PO, PKO. SSA X} DLinear % 4% F-
B, FPEEYE BE 9% 4 15, DLinear P 45 #8 2 50 S48
LR 2 fs, SRS R AR 3 s

*2 EBS¥IMNEE

Table 2 Optimization range of super parameters

BS (16, 256]
TS [24, 168]
LR [0.000 1, 0.01]
LP [2, 10]

x3 BSYIMNER

Table 3 Optimization results of super parameters

SR BS TS LR LP
IPO 40 120 0.010 00 6
PO 38 121 0.009 96 10
PKO 96 110 0.003 01 5
SSA 27 162 0.009 73 8

3.3 HEAFNLER

TG DLinear ¢ LA T 8T I 0968 S 5t 47 5 far
o . & 5. &l 6 435 A TIPO-DLinear 557 X} 2024
AE 10 A 31 H 15000 67 47 BCHE S A B 1Y) 2 PR
ST

DLinear M A3 45 B HE 2575 2 1 40 R 34
a7 Ja, 2R i A0 TR (E, BE S E A
2024 4F 10 7 31 HRZHHE 5 2022 2455
P e A5 2 e AR AR L H B IE . 3R 4 2024 4F
10 H 31 H5 2022 475 52 HAHRUEETHT 20 HE44 o

B3 A B 5 [PO-DLinear #55 % . PO-DLinear
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KPR

5 BAKREELERS

Fig.5 Seasonal component of power load
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Fig.6 Trend component of power load
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Table 4 Ranking of similarity between
October 31th and historical day

100

H 39 B I B He#
20224E10H 19H 358.219 1
2022412 18H 359.674 2
20224E10H 18 H 368.299 3
2022412 23H 398.751 4
20224E12H17H 402.228 5

20224E9 4 5H 405.257 6
20224E10H 10H 407.489 7
2022412422 H 413.405 8

20224F4F 8H 415.085 9
2022410 9H 418.839 10
20224E12H19H 426.641 11
20224E12H 24 H 434.166 12

2022491 6H 434,623 13
20224E10H 24 H 435.039 14
20224E10H 22 H 439.978 15

2022447 7H 440.778 16

202249 H 8 H 447.588 17

20224F4 H9H 447.902 18
20224105 20H 447.971 19
20224E12H 16H 448.445 20
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#54  PKO-DLinear %, SSA-DLinear !, DLinear
iR CNN-BiGRU-Attention & CNN-BiLSTM 14£4¢
20 A T RS R AT % Ll I SRR R Y R B
100, TN 45 R A& 7 fros, K 8 2 11:15—15:00
T 25 S R K, B9 kiR 25 BOS KL, K& 100
15:00—18:45 Fli i 2= WK &, 3= 5 R Tl {8 5 52
FRAE AT PR AR XS L o
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i Z1
— HSZf — fEfl — [PO-DLinear
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—— SSA-DLinear —— CNN-BiLSTM
CNN-BiGRU-Attention —— DLinear

B7 TmgERwttk
Fig.7 Comparison of prediction results
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Table 5 Comparison of evaluation indices

i MAE/  RMSE/ MAPE/ e
MW MW %

SO 56.639  66.957 4.67 0.833
IPO-DLinear 69.939  80.449 5.50 0.759
PO-DLinear 77773 88.586 6.10 0.708
PKO-DLinear 70334 81.025 5.53 0.755
SSA-DLinear 81.882  92.799 6.40 0.679

DLinear 76.288  99.234 6.42 0.633
CNN-BiGRU-Attention ~ 398.169  449.420  31.65  —6.524
CNN-BIiLSTM 347247 386391 2686  —4.562

0.078. 0.154, 0.2, 7.357, 5.395,
4 Lig

SCrP R T PO B FILAE, 456 A& N
S SR R BN 1% RS, LA DR AL A E A 4
AR R BE ST FICSUE YA . 5, 18 ] Logistic
Wi S50 iy A ol AR 5 5, 4 T B A6 B 22 R
WSR2 R R AE S . LK, 1R IR BB S R



& AH) ALK 128

MG, IPO B9k RE NS AR 5 22 A% B A% 72 106 487 ',
T R B 4 Jm e i . a5 A3 N AR 5
TR, i DR AT S ISR AS 5 0 ) B A e 8 e
PEAf BRI, TPO B3 AH LY PO SR 7R SR A K B2
WCSSGH B 1 35 T A T, R e e A B e 4 5 2k ]
RIS 2 B0 0 A AR AN B BN RE o TRRsE, 3¢
SR ARO NI E S Wik UESR R ¥ PN il R
T R KGR EE Tk 8 BRI
BRI B ARG 5 Dy s s 2 A AL,
BRI R TR ) 5 Y AT g SR B AR AL g B R
B, IE R R AE I 0 g s 6 g AR HEA TS AE, NI
B T S A T %) AR

S FSE R B IPO-DLinear #5555 248 1E
TS A R 35 B R A D0 R B IR
o AR GREIRN 2R AL R, BRI GENY
ST G AR AR 3E I AE T, 38 BB A R0 T 25 SR
PR PE . A, 25 18 B0 B Ak 33 R T A 1 fiE
FEE, R e B R AN B5, E— e sEpr
7 FH H A T T A

B
AATEE F# ol ) R TR S Ak 4 e

o/ 3 A+ H# R B (SGHNZZ00DKWT2400646) 3 84 ,

i BB

S k-

(1] mikds, 257K, shdt, 5 B TR HARMgE S IR G IR 1

S SUT R g SRR (0] PRy, 2024, 45(1): 13-21.
SHEN Hongtao, LI Fei, SHI Lun, et al. Short-term power load
forecasting based on reduction of meteorological data dimen-
sionality and hybrid deep learning[J]. Electric Power Construc-
tion, 2024, 45(1): 13-21.

(2] b2, RERS R, G, 55, S T2 A<M 1 Al
M &5 G RE IR 2R 8 2 T B A A M TR0 (0] Fl g i, 2024,
45(2): 127-136
HAN Baohui, LU Lingxia, BAO Zhejing, et al. Short-term fore-
casting of multienergy loads of integrated energy system based
on multihead probabilistic sparse self-attention model[J]. Elec-
tric Power Construction, 2024, 45(2): 127-136.

(31 B, P, ERIR, &5 3T ARETE AR E0m B R
ST K R EL SRR A 5 (7], o IR, 2023, 49(4): 85-91.
BU Feifei, BAI Hongkun, WANG Yuanyuan, et al. Research on
resident electricity consumption based on human comfort index
and power load forecasting[J]. China Measurement & Test,
2023, 49(4): 85-91.

(4] i, B3R, HFH. ZUHEECT I £ AR G #EE ) B
AT (7], AT R 53T, 2023, 44(8): 2541-2547
WU Di, MA Wenli, YANG Lijun. Power load forecasting with

quadratic exponential smoothing multi-objective combination

model[J]. Computer Engineering and Design, 2023, 44(8):
2541-2547.
[5] XUH S, FAN G L, KUANG G F, et al. Construction and appli-
cation of short-term and mid-term power system load forecast-
ing model based on hybrid deep learning[J]. IEEE Access,
2023, 11: 37494-37507.
7 SCH, SRR, 0, 45 BT VMD R M-k LSTM 1Y
BRI 5 vk (7). W R S T AR IR, 2023, 39(2): 46-52,
59.
TANG Yiqin, ZOU Hongliang, JIANG Xu, et al. A bus load

[l

(6

forecasting method based on VMD and Bayesian optimization
LSTM[J]. Power System and Clean Energy, 2023, 39(2): 46-
52,59.

(7] ESEUE, & F S, PNEEA . BT 2 0 mg ot & S Ak

LSTM [ 1 HL 0 S T30 0], s R e S, 2024,
52(14): 95-102.
WANG Yanfeng, CAO Yuhan, SUN Junwei. Short-term power
load forecasting based on multi-strategy improved golden jackal
algorithm-optimized LSTM[J]. Power System Protection and
Control, 2024, 52(14): 95-102.

(8] i, s, 25k, % A TFLHEAMLHEIERYS SA-

BiGRU 2543 BEUR R 5 2 o0 G i 0], s Jy a5, 2024,

45(5): 118-130.

HOU Jianmin, MENG Ying, LI Zhi, et al. Multi-energy load

forecasting in integrated energy systems based on comprehen-

sive correlation index and SA-BiGRU network[J]. Electric

Power Construction, 2024, 45(5): 118-130.

B, J5 38, X0, HTF VMD-LSTM-IPSO-GRU [ H, 7 1 fif

T 7. B AR S TR, 2024, 24(16): 6734-6741.

XIAO Wei, FANG Na, DENG Xin. Short-term load forecasting

based on VMD-LSTM-IPSO-GRU[J]. Science Technology and

Engineering, 2024, 24(16): 6734-6741.

[10] V7, Sk, BEER, 45, JETICE I P SoRIBGE TCN #e

FAB T AR IR H P90 £ A T (0] ) AR 8 7, 2024, 37(1): 1-7.
XU Qing, ZHANG Lingzhi, LIANG Chen, et al. Short-term

(9

[t

load forecasting for power system with high proportion new
energy based on joint sequential scenario and improved
TCN[J]. Guangdong Electric Power, 2024, 37(1): 1-7.

[11] BRIGEZL, T#%, 22548, 35T KPCA-CNN-DBIGRU FII 1]
G A T 5 ik (] A5 T R4, 2024, 38(2): 221-231.
CHEN Xiaohong, WANG Hui, LI Xihua. A short-term load
forecasting method based on KPCA-CNN-DBiGRU model [J].
Journal of Industrial Engineering and Engineering Manage-
ment, 2024, 38(2): 221-231.

[(12] Bk, BESTX, 224, 25 458 CNN SHCLEHLH M2 5 e
IRARGEL U 0], vy, 2024, 45(12): 162-173
GE Zhong, LONG Jiaofeng, LI Jian, et al. Multivariate load
forecasting of integrated energy systems based on convolu-
tional neural network and soft sharing mechanism [J]. Electric
Power Construction, 2024, 45(12): 162-173.

[13] Z=HUH, X4, X'E, 5. 22T DWT-Informer 1 £ DX 45 9] 71


https://doi.org/10.1109/ACCESS.2023.3266783

129

THH &, TS LM H & E M IPO-DLinear A4 H §if H, 1 £ i 0

[14]

[15]

[16]

(17]

(18]

[19]

[20]

i 0 (07 I 54836, 2024, 61(3): 160-166, 191.

LI Jiayi, ZHAO Bing, LIU Xuan, et al. Short-term substation
load forecasting based on DWT-Informer model[J]. Electrical
Measurement & Instrumentation, 2024, 61(3): 160-166,191.
A4k, W MIIE, EWIPH, 5. ZEF Attention-LSTM 5 2457
B2 I S A 0 A T v (0] Hl ) TR HOR, 2023, 42(5):
138-147.

ZHU Jizhong, MIAO Yuwang, DONG Zhaoyang, et al. Short-
term load forecasting method based on Attention-LSTM and
multi-model integration[J]. Electric Power Engineering Tech-
nology, 2023, 42(5): 138-147.

A, XV, #HIK, 4. 5T CEEMDAN-CSO-LSTM-
MTL I &5 HE IR 52 ¢ 22 T8 G B (0] v Jy i, 2025,
46(1): 72-85.

WANG Yongli, LIU Zeqiang, DONG Huanran, et al. Multi-
variate load forecasting of integrated energy system based on
CEEMDAN-CSO-LSTM-MTLJ]. Electric Power Construc-
tion, 2025, 46(1): 72-85.

ZEM, 0, BEAR, A5, — RPN R 1) 22 ST A e ) B
AT 5 1], 1 RG ARG 545, 2024, 52(13): 47-
S8.

LI Nan, JIANG Tao, SUI Xiang, et al. A multi-component
short-term power load combination forecasting method on a
scale[J].
Control, 2024, 52(13): 47-58.

XA, N2, HiE ¥, 4. £ T DBO-VMD il IWOA-
BILSTM #1220 £ 25 45 A5 780 f) S 401 bt 67 4 B0 L) vl
RGP 510, 2024, 52(8): 123-133.

LIU Jie, CONG Lanmei, XIA Yuanyang, et al. Short-term
power load prediction based on DBO-VMD and an IWOA-

time-frequency Power System Protection and

BILSTM neural network combination model[J]. Power
System Protection and Control, 2024, 52(8): 123-133.

HKUUE, B, BLH, % 3T FPA-VMD Fil BILSTM 14
o0 2% £y 22 9T i B A 0 WL O B A 0 (0. R RO AR, 2022,
46(8): 3269-3279.

ZHANG Shugqing, LI Jun, JIANG Angi, et al. A novel two-
stage model based on FPA-VMD and BiLSTM neural network
for short-term power load forecasting[J]. Power System Tech-
nology, 2022, 46(8): 3269-3279.

SRR, RS, FER, % —FhR T2 M 22 25 R £
TEARAE TE 1) 600 1r 900 77 25 (7). Wy Js TR, 2024, 43(1):
117-126.

ZHANG Jiaan, LI Fengxian, WANG Tiecheng, et al. A load
prediction method using memory neural network and curve
shape correction[J]. Electric Power Engineering Technology,
2024, 43(1): 117-126.

UL EEA, 1R, % LTI 219 CNN-GRU AL
AP Iy 12 (0] BRBUR A= 2 (124D , 2024, 57(6):
812-820.

CHENG Ming, ZHAI Jinxing, MA Jun, et al. Transfer learning
based CNN-GRU short-term power load forecasting method

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[J]. Engineering Journal of Wuhan University, 2024, 57(6):
812-820.

FEFE, M8, R4k, 5. 35T CNN-BiGRU-Attention 14
FL A A (0], AT SR, 2024, 19(1): 344-350.
REN Shuang, YANG Kai, SHANG lJicai, et al. Short-term
power load forecasting based on CNN-BiGRU-attention[J].
Journal of Electrical Engineering, 2024, 19(1): 344-350.
B3R, WIFE, AR, 55 T RE RGBSR P8
M2 M2 125G RE IR R e S A8 IE T (0. AR,
2022, 46(9): 3345-3357.

LI Wenwu, ZHANG Pengyu, SHI Qiang, et al. Correction
prediction of integrated energy system load based on aggre-
gated mixed mode decomposition and TCN[J]. Power System
Technology, 2022, 46(9): 3345-3357.

ZENG A L, CHEN M X, ZHANG L, et al. Are transformers
effective for time series forecasting?[J]. Proceedings of the
AAAI Conference on Artificial Intelligence, 2023, 37(9):
11121-11128.

LIAN J B, HUI G H, MA L, et al. Parrot optimizer: algorithm
and applications to medical problems[J]. Computers in Bio-
logy and Medicine, 2024, 172: 108064.

BOUAOUDA A, HASHIM F A, SAYOUTI Y, et al. Pied
kingfisher optimizer: a new bio-inspired algorithm for solving
numerical industrial
blems[J]. Neural Computing and Applications, 2024, 36(25):
15455-15513.

MEIW, = #E. HeTF SSA-VMD-BILSTM 57 i1 75 FiL ik 67 fif
T (91, ) AR 7, 2024, 37(6): 53-61.

LIN Yanxu, GAO Hui. Load prediction method of charging
station based on SSA-VMD-BIiLSTM model[J]. Guangdong
Electric Power, 2024, 37(6): 53-61.

WA, MR, DR TR RS8N VMD-
GRU J7 3 i, Jy fter SO AR Y (1], AL e ) R 4R (A 4R
B, 2023, 50(1): 38-47.

XU Yan, XIANG Yifeng, MA Tianxiang. VMD-GRU short-

optimization and engineering  pro-

term power load forecasting model based on optimized parame-
ters of partical swarm algorithm[J]. Journal of North China
Electric Power University (Natural Science Edition), 2023,
50(1): 38-47.

WA, T AAE, AR R, 55, BT el ok TR R i el
P T DG A 8 32 0] LR 2 27 4R (T 24 i), 2022, 55(9):
894-900.

LEI He, FANG Rengcun, YANG Dongjun, et al. Multi-micro-
grid optimization scheduling based on improved secondorder
particle swarm optimization algorithm[J]. Engineering Journal
of Wuhan University, 2022, 55(9): 894-900.

XIE L, HAN T, ZHOU H, et al. Tuna swarm optimization: a
novel swarm-based metaheuristic algorithm for global opti-
mization[J]. Computational Intelligence and Neuroscience,
2021, 2021: 9210050.

YAPICI H, CETINKAYA N. A new meta-heuristic optimizer:


https://doi.org/10.1609/aaai.v37i9.26317
https://doi.org/10.1609/aaai.v37i9.26317
https://doi.org/10.1016/j.compbiomed.2024.108064
https://doi.org/10.1016/j.compbiomed.2024.108064
https://doi.org/10.1016/j.compbiomed.2024.108064
https://doi.org/10.1155/2021/9210050

2 HEHEAR 130

pathfinder algorithm[J]. Applied Soft Computing, 2019, 78: Al Yu, JIA Yanbing, HAN Xiaoqing. Day-ahead electricity
545-568. price prediction method based on similar day screening and

[31] HT5, BER A, Wi SC2¢, %5, Btk GO {4k CNN-BIiLSTM # combined deep learning modeling[J]. Power System Techno-
AT N (3], Hr L, 2025, 51(4): 82-90. logy, 2025, 49(1): 242-251. .

BAI Yu, XUE Guijun, XIE Wenju, et al. Improved GJO opti-
mized CNN-BiLSTM heat load prediction model[J]. China YEZ TR
Measurement & Test, 2025, 51(4): 82-90.

[32] WEI S C, HE C, ZHANG J L, et al. Short-term load forecast

FEE(1975), B, T4, 202, D5 r il
AT ST E. REMAP S B3R (E-
mail: arejunyu@foxmail.com);

BAS(2001), 55, W-LAEBE, BFFE 7164

based on similar daily retrieval and deep learning[C]//2023
IEEE/IAS Industrial and Commercial Power System Asia
(I&CPS Asia). Chongging, China. IEEE, 2023: 1136-1142. Ha, ) ZR G A7 i T 5

[33] S, BUatevk, o5 14 1. S TR I e 5 4 R 2 ) R XUE1(1989), 55, fit:, PRI, S5 5 1 el
B HETH ARG [T, B LA, 2025, 49(1): 242-251. THEH REBTRTEZAGIN  RAE AR S B S EEoR

Day-ahead power load forecasting based on meteorological similar
day correction and IPO-DLinear

YU Huijun', ZHAO Wenchuan', LIU Jie', XU Yinfeng’, ZOU Hai’, GU Haibin’
(1. School of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou 412007, China;
2. Zhuzhou Power Supply Company, State Grid Hunan Electric Power Co., Ltd., Zhuzhou 412000, China)

Abstract: The existing power load forecasting methods encounter significant challenges, particularly when accounting for the
influence of meteorological factors on load fluctuations. Traditional methods often overlook the complex nonlinear relationship
between meteorological characteristics and load, leading to reduced forecasting accuracy. A day-ahead power load forecasting
model based on meteorological similar day correction (MSDC)-improved parrot optimizer (IPO)-decomposition-based linear
(DLinear) is proposed. The proposed method enhances the parrot optimizer (PO) by incorporating a logistic map, adaptive
mutation strategy, and spiral fluctuation search to optimize the DLinear superparameters. Periodicity and trend characteristics
are extracted from the DLinear model. The load forecast value is corrected by comparing the Euclidean distance of
meteorological characteristics. The resulting day-ahead power load forecasting model, IPO-DLinear-MSDC, is validated using
a simulation analysis of total load data from the Zhuzhou area in Hunan from June to October 2024. The model's performance is
evaluated with an average absolute percentage error (MAPE) of 4.67% and R* of 0.833, demonstrating improvements of
15.09% and 23.44%, and increases of 0.074 1 and 0.125 3, respectively, comparing to IPO-DLinear model and PO-DLinear
model.

Keywords: day-ahead power load forecasting; meteorological similar day correction (MSDC); improved parrot optimizer

(IPO); decomposition-based linear (DLinear); Logistic map; Euclidean distance
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