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基于气象相似日修正和 IPO-DLinear的日前电力负荷预测
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摘　要：现有电力负荷预测方法面临诸多挑战，尤其是在考虑气象因素对负荷波动的影响时，传统方法往往忽视气

象特征与负荷之间复杂的非线性关系，导致预测精度不足。对此文中提出一种基于气象相似日修正（meteorological
similar day correction, MSDC）和改进鹦鹉优化（improved parrot optimizer, IPO）线性分解（decomposition-based linear,
DLinear）的日前电力负荷预测模型。首先运用 Logistic 映射、自适应变异策略、螺旋波动搜索 IPO 对 DLinear 超参

数进行优化，然后由 DLinear 提取数据的周期性和趋势性特征，最后通过比对气象特征欧氏距离修正负荷预测值，

形成基于 IPO-DLinear-MSDC 的日前电力负荷预测模型。采用 2024 年 6 月至 10 月湖南株洲地区总电力负荷数据

集进行仿真分析，IPO-DLinear-MSDC 模型的输出平均绝对百分比误差（mean absolute percentage error, MAPE）、决定

系数 R2 分别为 4.67%、0.833，相较于 IPO-DLinear 与 PO-DLinear 模型，MAPE 分别下降了 0.83 个百分点、1.43 个百

分点，R2 分别提升了 0.074、0.125。
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0    引言

电力系统负荷预测是保障电力系统安全稳定

运行、提高资源利用效率、促进可再生能源利用的

重要手段[1-2]。负荷预测为发电调度优化、电网规

划扩展、电力市场经济运行提供了科学依据，有助

于实现供需平衡、降低冗余浪费，同时支持需求侧

管理和电价优化，推动清洁能源接入和智能电网建

设。在实现碳中和目标的背景下，负荷预测对于构

建高效、绿色、智能的现代电力系统具有重要意义。

当下流行多种负荷预测方法和模型，传统统计

模型理论成熟、实现简便，得到了广泛应用[3-4]。近

年来，深度学习模型[5]成为研究热点，常见的有循

环神经网络、长短时记忆网络[6-7]、门控循环单元

（gated recurrent unit, GRU）[8-9]、时间卷积网络[10]以

及 卷 积 神 经 网 络（convolutional  neural  network,
CNN）[11-12]等。集成模型通过结合多种模型的优势

进一步提高预测精度[13-17]。文献[18]提出基于双

向长短时记忆（bidirectional long short-term memory,
BiLSTM）神经网络的电力系统短期负荷预测模型，

采用指数权移平均法处理缺失值。文献[19]提出

基于完全集成经验模态分解和 BiLSTM网络的误

差预测模型以修正曲线形状。文献[20]运用迁移

学习方法将 CNN-GRU的训练迭代学习结果迁移

至目标域以提升预测性能，但对于数量庞大且相关

性较低的数据存在一定局限性。文献[21]提出

CNN-双向门控循环单元（bidirectional  gated  recur-
rent unit, BiGRU）-Attention预测模型，BiGRU弥补

了 GRU单向时间序列的不足，但缺少对模型寻优

的部分，难以在一定时间范围内得到最优解。文献

[22]通过构建主从时间卷积网络实现负荷的初步

预测和误差修正。新兴的线性变换模型如线性分

解（decomposition-based linear, DLinear）[23]展示出强

大的预测能力，其创新之处在于结合了移动平均法

来提取趋势成分，简化了复杂序列的处理过程，并

采用线性建模方法分别预测趋势和季节性成分。

与传统复杂模型相比，DLinear在保持高预测精度

的同时，计算效率更高、结构更简洁。

寻优算法的加入能够快速搜索大规模的解空

间，找到全局最优解或接近最优解的结果，具有很

强的适应性，能在不同的问题和约束条件下应用，

如鹦鹉优化（parrot optimizer, PO）算法 [24]、鹭鹰优

化（pied kingfisher optimizer, PKO）算法[25]、麻雀搜

索算法（sparrow search algorithm, SSA）等。文献[26]
利用 SSA对变分模态分解（variational mode decom-
position, VMD）进行超参数寻优，再将数据中的噪

音分解为多个周期性分量以更好地分析数据特

征。文献[27]运用粒子群优化（particle swarm optimi-
zation, PSO）对 VMD中惩罚因子和分解尺度进行

寻优以消除主观调参对预测精度的影响。文献
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[28]运用 Logistic映射对种群初始化以改进 PSO，

从而提高局部搜索能力。文献[29]通过模仿金枪

鱼群螺旋觅食和抛物线觅食行为提出金枪鱼群优

化（tuna swarm optimization,  TSO）算法。文献[30]
提出的探路者算法（pathfinder algorithm, PFA）通过

模仿群体的领导层级来寻找最佳食物区域或猎

物。受文献[29-30]中波动游走和螺旋觅食启发形

成螺旋波动搜索策略以改进 PO算法多路径探索，

文献[31]引入自适应变异策略处理算法迭代后期

陷入局部最优解和收敛精度不高的问题。

现有的启发式算法和深度学习方法在一定程

度上提高了预测精度，但这些方法通常面临计算复

杂度较高、模型过拟合等问题，且对气象等外部因

素的敏感性不足。传统组合算法难以准确捕捉各

因素特征之间复杂的非线性关系，容易陷入局部最

优解，对外部气象因素的考虑较少，导致在气候

变化较大时预测误差增大，无法充分利用数据中的

潜在信息，进而影响预测结果的可靠性和稳定性。

为解决这一问题，文献[32]采用最大互信息系

数法对信息数据进行特征提取，通过加权灰色关联

度的历史相似日筛选方法生成历史数据集。文献

[33]基于皮尔逊相关系数、灰色关联分析等构建日

特征向量，利用综合相似度寻找相似日作为深度学

习网络的训练样本。文中提出一种基于历史气象

数据的气象修正方法，能够有效提高负荷预测的准

确性。该方法通过计算预测日气象数据与历史气

象数据之间的相似度，选择与目标气象条件最相似

的历史日，进而修正负荷预测结果。

文中基于改进鹦鹉优化（improved parrot opti-
mizer, IPO）算法对 DLinear超参数进行寻优，最大

程度提高模型的预测能力。综合气象修正方法与

优化算法，文中提出的 IPO-DLinear-气象相似日修

正（meteorological  similar  day  correction,  MSDC）模
型在电力负荷预测中展现出优越的性能。 

1    日前电力负荷预测气象特征筛选及相似

日修正
 

1.1    气象特征筛选

为从获取的气压、风向、风速、温度、相对湿

度、水汽压、降水量中筛选出与负荷相关的气象特

征，采用皮尔逊相关系数法进行相关性分析。 

r =

∑
i

(
Xi−X

)(
Yi−Y

) ∑
i

(
Xi−X

)2 ∑
i

(
Yi−Y

)2
（1）

r Xi Yi

X Y

式中： 为皮尔逊相关系数； 、 分别为变量 X、Y
的第 i个样本数据； 、 分别为变量 X、Y的均值。

r∈[−1, 1]，r值越接近 1或−1表示变量之间的

关系越强，而 r值接近 0则表示变量之间几乎无相

关关系。正相关系数表示变量之间的正向关系，即

一个变量增加时另一个也倾向增加；负相关系数则

表示反向关系，即一个变量增加时另一个变量倾向

减少。负荷与气象特征的相关系数如表 1所示。
  

表 1    负荷与气象特征的相关系数
Table 1    Correlation coefficients between load and

meteorological characteristics
 

气象特征 相关系数

气压 −0.084

风速 0.51

温度 0.87

相对湿度 −0.83

水汽压 0.21

降水量 −0.13

风向 0.022
 

由表 1可知，温度和负荷之间的相关性系数为

0.87，表现出较强的正相关。这表明随着温度的升

高，负荷会显著增加。这通常是因为在高温天气

中，空调和制冷设备的使用频率上升，用电需求增

加。相对湿度和负荷之间的相关性系数为−0.83，表
现出较强的负相关。这通常是因为在高温低湿的

情况下，对制冷的需求更高，用电需求增加。因此，

当湿度降低时，负荷会相应增加。风速和负荷之间

的相关性系数为 0.51，表现出中等强度的正相关。

在风速较高时，空气流动可能改善环境的舒适度，

从而间接影响空调等设备的使用频率，导致负荷变

化。在筛选气象特征时，设定相关性系数的阈值为

0.5，以确保选择的气象特征对负荷具有较强的预测

能力。其他气象特征如水汽压和降水量，虽然也与

负荷存在一定关系，但相关性较弱。基于此，筛选

得到温度、相对湿度和风速作为主要的负荷预测气

象特征。 

1.2    基于欧氏距离的 MSDC
基于欧氏距离的 MSDC核心思想是利用预测

日气象数据与历史气象数据之间的相似性，结合历

史负荷数据对负荷预测进行修正，使模型在气象条

件相似的前提下，借用历史负荷的实际数据修正预

测负荷，减少预测误差。

首先，模型读取负荷预测数据、预测日气象数

据、历史负荷数据和历史气象数据，并将这些数据

转化为便于处理的 NumPy数组。NumPy数组是一
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种多维数据结构，具有高效的存储和计算能力。通

过将数据转化为 NumPy数组，模型能够更方便地

进行矩阵运算和数值计算。接着，使用欧氏距离作

为度量手段，计算预测日气象数据和历史气象数据

之间的相似性。欧氏距离是一种常用的度量方式，

能够有效衡量 2个数据点之间的直线距离，适用于

多维数据的比较。具体来说，对于每个预测日的气

象数据点，模型会计算该点与历史气象数据集中每

个点的欧氏距离，距离值越小，表示预测日气象数

据与历史气象数据的相似性越高。

通过这种方式，模型能够找出与预测日气象数

据最相似的历史气象数据点，并提取对应的历史负

荷值，为预测提供有效的修正依据。数学描述如下： 

S =

Ã
G∑

g=1

(
Fp−Hp,g

)2
（2）

Fp

Hp,g

式中：S为相似度；G为历史总天数； 为预测日气

象数据； 为历史总天数中第 g天的气象数据。

最后，模型通过一个加权公式对预测负荷值进

行修正，结合预测负荷值和最相似历史负荷值，利

用调整系数控制修正权重，使得模型在历史数据与

预测日数据之间灵活平衡。这种方式能够适应不

同数据的变化，提高负荷预测的准确性。数学描述

如下： 

Cload = αPload+ (1−α)Sload （3）

Cload

Pload

Sload

式中： 为修正后的预测负荷数据；α为控制修正

权重的参数，文中设为 0.85； 为模型预测的负

荷； 为最相似的历史气象点对应的负荷值。 

2    基于 IPO-DLinear-MSDC 的日前电力负

荷预测组合模型
 

2.1    PO 算法

（1） 种群初始化。设置一个大小为 N的种群，

最大迭代数 T设置为 100，数学描述如下： 

Xi,0 = lb+ rand(0,1)× (ub− lb) （4）

Xi,0 ub lb式中： 为第 i个个体初始时刻位置； 、 分别为

搜索空间的上限和下限。

（2） 觅食行为。 

Xi,t+1 =
(
Xi,t −Xbest

)
Levy(D)+W （5）

 

W = rand(0,1)×
Å

1− t
T

ã 2t
T

Xmean,t （6）
 

Xmean,t =
1
N

N∑
k=1

Xk,t （7）

Xi,t、Xi,t+1 i t +

Xbest

式中： 分别为第 个个体在第 代、第 t 1代

的位置； 为当前搜索到的最佳位置；t为当前迭

Levy(D)

Xmean,t Xk,t

k t

代次数； 为描述鹦鹉飞行的列维分布 ；

为鹦鹉在第 t代种群内的平均位置； 为种

群中第 个个体在第 代的位置。

（3） 停留行为。 

Xi,t+1 = Xi,t +XbestLevy(D)+ rand(0,1)×ones(1,D)
（8）

ones(1,D) Xbest×
Levy(D) rand(0,1)×ones(1,D)

式中： 为维度为 D的全 1向量 ；

为鹦鹉飞向宿主的过程；

为鹦鹉随机停在宿主身体某部位的过程。

（4） 沟通行为。沟通行为分为飞向鸟群和飞离

鸟群，假设 2种行为发生概率相等，同时将 Xmean,t 记

为群体中心。该过程表达式如下：  
0.2R

Å
1− t

T

ã(
Xi,t −Xmean,t

)
0≤R≤0.5

0.2Rexp
Å
− t

rand(0,1)×T

ã
0.5 < R≤1

（9）

R 0.2R
Å

1− t
T

ã(
Xi,t−

Xmean,t
)

0.2R×

exp
Å
− t

rand(0,1)×T

ã式中： 为 0~1内的随机数 ；

为 个 体 加 入 群 体 交 流 的 过 程 ；

为个体交流完飞离的过程。

（5） 害怕陌生人行为。 

Xi,t+1 = Xi,t +R
(
Xbest−Xi,t

)
cos
Å

0.5π× t
T

ã
−

(
Xi,t −Xbest

)Å t
T

ã 2
T

cos(Rπ) （10）

R
(
Xbest−Xi,t

)
cos
Å

0.5π× t
T

ã
(
Xi,t −Xbest

)Å t
T

ã 2
T

cos(Rπ)

式中： 为鹦鹉向宿主飞

去的过程； 为鹦鹉远离陌

生人的过程。

PO算法流程如图 1所示。 

2.2    IPO 算法

（1） Logistic映射初始化种群位置。在 PO算法

中，初始种群的多样性对于全局搜索能力非常重

要。为避免初始种群过于集中或趋于单一导致算

法无法在搜索空间中有效探索，采用 Logistic映射

初始化种群位置，利用混沌映射增加初始种群的多

样性，确保搜索过程不受局部区域的限制，从而提

升全局搜索能力。数学描述如下： 

Ct+1 = µCt (1−Ct) （11）

µ

Ct Ct+1

式中： 为控制映射状态的可调参数，取值范围为

0~4，文中取 3.9； 为当前混沌序列的值； 为更

新后混沌序列的值。

（2） 螺旋波动搜索更新鹦鹉位置。种群个体的

位置更新通常是线性的，这会导致个体在搜索空间

中沿着较为规则的路径进行搜索，容易陷入局部最

123 于惠钧 等：基于气象相似日修正和 IPO-DLinear的日前电力负荷预测  



优解。引入螺旋波动搜索策略后，个体能够在搜索

空间中采用更加灵活、动态的路径进行搜索，从而

增强算法跳出局部最优解的能力。数学描述如下： 

Yi,t+1 = Yi,t + r exp(θi)
(
Yi,t −Ybest,t

)
（12）

Yi,t Yi,t+1

θ

Ybest,t

式中： 为第 i个个体在第 t代的位置； 为第

i个个体经过螺旋搜索更新后的位置；r、 为螺旋搜

索参数； 为第 t代的最佳位置。

（3） 自适应变异策略。在 PO算法的后期，当

种群个体趋于收敛时，算法容易陷入局部最优解，

搜索过程会变得缓慢且效果不佳。为提高后期搜

索的效率，避免过早收敛，引入自适应变异策略。

该策略能够在算法的后期通过调整变异强度增加

种群的多样性，从而使个体继续进行有效的局部搜

索，进一步提高收敛精度。自适应变异策略根据迭

代次数动态调整变异强度，避免在早期阶段变异过

强而破坏已获得的优良解。数学描述如下： 

Y ′best = Ybest+ trnd(t) (Ybest−Ymean) （13）

Ybest Y ′best
trnd(t) Ymean

式中： 为当前最优解； 为变异后的最优解；

为分布变异函数； 为种群平均位置。

cos(2πxi)

xi = 0

利用 Rastrigin函数测试 PO算法在改进前后的

寻优效果。Rastrigin函数是一个典型的多峰优化问

题，常用于测试优化算法的性能。其数学表达式包

含大量局部极小值，并且由于 项的高频振

荡，函数具有复杂的波动结构，导致算法容易陷入

局部最优解，xi 为第 i个决策变量的值。全局最优

解位于 时，函数值为 0，且随着维度的增大，局

部最优解数量激增，优化难度也随之增加。数学表

达式如下： 

f (xi) = 10d+
d∑

i=1

(
x2

i −10cos(2πxi)
)

（14）

d式中： 为决策变量的维度。

PO算法改进前后迭代收敛情况如图 2所示。
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图 2   迭代收敛
Fig.2    Iterative convergence

  

2.3    DLinear 模型

DLinear是一种专为时间序列预测设计且简洁

高效的线性模型。其核心思想在于将输入的多变

量时间序列数据分解为趋势成分和季节性成分，并

对这两部分分别进行建模，最后将预测结果进行组

合以获得最终的预测值。其分解与独立建模的方

法能够提高预测的准确性。DLinear结构如图 3
所示，其中Wt、Ws 为线性层的权重。
 
 

线性权重W
s

线性权重W
t

季节性
成分 趋势成分

预测输出

+ +

图 3   DLinear 结构
Fig.3    DLinear structure

 

Xt

Xtrend

在 DLinear模型中，序列分解通过移动平均实

现。具体而言，给定一个时间序列 ，首先通过移

动平均法计算提取趋势成分 。 

Xtrend =
1
E

E−1∑
i=0

xt−i （15）

Xseason

式中：E为移动窗口的大小。通过这种平滑操作，消

除序列中的短期波动，突出长期趋势。随后，通过

原始序列减去趋势成分得到季节性成分 ： 

Xseason = Xt −Xtrend （16）

分解后的趋势成分和季节性成分分别通过线

性层进行建模和预测。对于每个成分，模型定义相

应的线性变换： 

X̂trend =WtXtrend+bt （17）
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X̂season =WsXseason+bs （18）

X̂trend、X̂season式中： 分别为线性变换后的趋势成分和

季节性成分；bt、bs 为对应的偏置项。

X̂

最终，DLinear模型将趋势成分和季节性成分

的预测结果进行组合，得到最终的预测值 ： 

X̂ = X̂trend+ X̂season （19）

为了更好地优化 DLinear模型的训练过程，选

择合适的超参数至关重要。不同的超参数配置会

显著影响模型的收敛速度与预测精度。以下是一

些关键的超参数设置，其在模型的训练过程中起着

决定性作用：

（1） 批次大小（batch size, BS），控制每次更新中

用于计算梯度的样本数量。

（2） 时间步长（time step, TS），指每次输入到模

型中的时间序列长度。较长的 TS可以捕捉到更长

时间范围内的依赖关系，而较短的 TS更适用于短

期预测。

（3） 学习率（learning rate, LR），控制每次权重更

新的步长，直接影响模型的收敛速度。过大的

LR可能导致训练不稳定，过小的 LR则可能导致训

练速度过慢。

（4） 学习率调度器耐心参数（learning patience,
LP），用于动态调整学习率，以便在训练过程中根据

验证集的表现逐步减小 LR，从而提高模型的收敛

效果。 

2.4    IPO-DLinear-MSDC 组合预测模型

基于 IPO-DLinear-MSDC模型的日前电力负荷

预测步骤如下。

阶段一：将超参数 BS、TS、LR、LP赋值为宿主

位置，Logistic映射初始化鹦鹉种群位置，同时采用

螺旋波动搜索更新位置，通过自适应变异策略提高

最优位置收敛精度，输出超参数的最优值。

阶段二：将经过标准化归一化的数据输入更新

超参数后的 DLinear中，DLinear提取出季节性成分

和趋势成分，经线性层输出初步预测值。

阶段三：将预测日气象数据与历史气象数据经

欧氏距离比对后得出最佳相似日，找到该日的历史

负荷，与预测负荷加权修正后输出最终预测结果。

图 4为 IPO-DLinear-MSDC模型，其中采样间

隔为 15 min。 

3    实例验证分析
 

3.1    数据处理及评估指标

采用 2024年 6月至 10月湖南株洲地区电网真

实总电力负荷数据集、2024年 10月 31日气象数

据、2022年总负荷数据集及 2022年气象数据进行

模型验证分析。其中 2024年 6月 1日至 10月

30日为历史日 ， 10月 31日为待测日。 2024年
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10月 31日气象数据及 2022年气象数据将用于气

象相似日比对，比对筛选后从 2022年总负荷数据

集中得到最相似日的负荷数据，再与 2024年 10月

31日负荷预测值进行修正处理。数据采样间隔为

15 min，每天采样 96组数据。

模型输出结果采用均方根误差（root  mean
square error, RMSE）、平均绝对误差（mean absolute
error,  MAE）、平均绝对百分比误差（mean absolute
percentage error, MAPE）、决定系数 R2 作为评估指

标。其中 RMSE对较大误差敏感，强调模型在极端

值上的表现。MAE是预测值与实际值之间绝对差

异的平均值，可直观反映预测值与实际值的误差大

小。MAPE提供误差的相对比例，用于理解和比较

不同模型的性能。R2 衡量模型对数据变异的解释

能力，用于衡量模型拟合度。 

3.2    DLinear 超参数寻优

采用 IPO、PO、PKO、SSA对 DLinear网络寻

优，种群维度均设为 15。DLinear网络超参数寻优

范围如表 2所示，寻优结果如表 3所示。
 
 

表 2    超参数寻优范围
Table 2    Optimization range of super parameters

 

超参数 寻优范围

BS [16, 256]

TS [24, 168]

LR [0.000 1, 0.01]

LP [2, 10]
 
 

表 3    超参数寻优结果
Table 3    Optimization results of super parameters

 

寻优算法 BS TS LR LP

IPO 40 120 0.010 00 6

PO 38 121 0.009 96 10

PKO 96 110 0.003 01 5

SSA 27 162 0.009 73 8
  

3.3    模型预测结果

寻优后 DLinear将以更新后的超参数进行负荷

预测。图 5、图 6分别为 IPO-DLinear模型对 2024
年 10月 31日预测负荷数据分解得到的季节性成

分与趋势成分。

DLinear从数据中提取出季节性成分和趋势成

分后，经线性权重输出初步预测值 ，随后通过

2024年 10月 31日气象数据与 2022年全年气象数

据比对得到最佳相似日进行修正。表 4为 2024年

10月 31日与 2022年历史日相似度前 20排名。

将文中模型与 IPO-DLinear模型、PO-DLinear
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Fig.5    Seasonal component of power load
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Fig.6    Trend component of power load
 

表 4    10 月 31 日与历史日相似度排名

Table 4    Ranking of similarity between
October 31th and historical day

 

日期 欧氏距离 排名

2022年10月19日 358.219 1

2022年12月18日 359.674 2

2022年10月18日 368.299 3

2022年12月23日 398.751 4

2022年12月17日 402.228 5

2022年9月5日 405.257 6

2022年10月10日 407.489 7

2022年12月22日 413.405 8

2022年4月8日 415.085 9

2022年10月9日 418.839 10

2022年12月19日 426.641 11

2022年12月24日 434.166 12

2022年9月6日 434.623 13

2022年10月24日 435.039 14

2022年10月22日 439.978 15

2022年4月7日 440.778 16

2022年9月8日 447.588 17

2022年4月9日 447.902 18

2022年10月20日 447.971 19

2022年12月16日 448.445 20
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模型、PKO-DLinear模型、SSA-DLinear模型、DLinear
模型、CNN-BiGRU-Attention及 CNN-BiLSTM传统

组合预测模型进行对比，训练迭代数均设置为

100。预测结果如图 7所示，图 8为 11:15—15:00
预测结果放大图，图 9为误差散点图 ，图 10为

15:00—18:45预测误差放大图，表 5为预测值与实

际值的评估指标对比。
  

03:4500:00 07:30 11:15 15:00 18:45 22:30

900

1 100

1 300

1 500

1 700

1 900

2 100

负
荷

/M
W

时刻

真实值 文中模型 IPO-DLinear

PO-DLinear PKO-DLinear

DLinearCNN-BiGRU-Attention

SSA-DLinear CNN-BiLSTM

图 7   预测结果对比
Fig.7    Comparison of prediction results
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图 8   11:15—15:00 预测结果放大对比
Fig.8    Enlarged comparison of prediction

results from 11:15 to 15:00
 

由图 7—图 10可知，文中模型相较于其他模型

精度明显提升。结合气象修正的模型在多个时间

段内表现出较小的预测误差，尤其在负荷变化较大

的时段，负荷预测值的精度显著高于其他模型。

由表 5可知，文中模型与其他模型相比，MAE
分 别 下降 13.3、 21.134、 13.695、 25.243、 19.649、
341.53、 290.608  MW； RMSE分 别 下 降 13.492、
21.629、 14.068、 25.842、 32.277、 382.463、 319.434
MW；MAPE分别下降 0.83、1.43、0.86、1.73、1.75、
26.98、22.19个百分点；R2 分别上升 0.074、0.125、

0.078、0.154、0.2、7.357、5.395。
 

4    结论

文中提出基于 IPO的寻优算法，结合自适应变

异策略和螺旋波动搜索策略，以解决传统算法在全

局搜索能力和收敛度上的不足。首先，运用 Logistic

映射初始化种群位置，提升初始化位置的多样性，

增强算法的全局搜索能力。其次，在螺旋波动搜索
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Fig.9    Comparison of prediction errors
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Fig.10    Enlarged comparison of prediction
errors from 15:00 to 18:45

 

表 5    评估指标对比

Table 5    Comparison of evaluation indices
 

模型 MAE/
MW

RMSE/
MW

MAPE/
%

R2

文中模型 56.639 66.957 4.67 0.833

IPO-DLinear 69.939 80.449 5.50 0.759

PO-DLinear 77.773 88.586 6.10 0.708

PKO-DLinear 70.334 81.025 5.53 0.755

SSA-DLinear 81.882 92.799 6.40 0.679

DLinear 76.288 99.234 6.42 0.633

CNN-BiGRU-Attention 398.169 449.420 31.65 −6.524

CNN-BiLSTM 347.247 386.391 26.86 −4.562
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策略下，IPO算法能够根据多条路径灵活调整位置，

从而有效找到全局最优解。最后，引入自适应变异

策略，解决算法在后期收敛度不高和易陷入局部最

优解的问题。IPO算法相比 PO算法在求解精度和

收敛速度上均有所提升，特别是在处理高维复杂问

题时表现出更为稳定和准确的预测能力。同时，文

中针对电力系统负荷的季节性和天气依赖性，提出

基于历史气象数据的气象修正方法。通过欧氏距

离计算预测日气象数据与历史数据之间的相似度，

模型能够识别出与当前气象条件最相似的历史天

数，并利用相应的历史负荷数据进行修正，从而有

效提升负荷预测的准确性。

文中研究表明将 IPO-DLinear模型与气象修正

方法相结合能够显著提高常规情况下的预测精

度。结合气象数据的多种输入变量，模型不仅能增

强对气象变化的适应能力，还能有效改善预测结果

的鲁棒性。此外，考虑到数据处理和预测操作的便

捷性，后续将搭建人机交互平台，进一步优化实际

应用中的预测工作。
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Day-ahead power load forecasting based on meteorological similar
day correction and IPO-DLinear

YU Huijun1,  ZHAO Wenchuan1,  LIU Jie1,  XU Yinfeng2,  ZOU Hai2,  GU Haibin2

(1.  School of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou 412007, China;

2.  Zhuzhou Power Supply Company, State Grid Hunan Electric Power Co., Ltd., Zhuzhou 412000, China)

Abstract：The existing power load forecasting methods encounter significant challenges, particularly when accounting for the
influence of meteorological factors on load fluctuations. Traditional methods often overlook the complex nonlinear relationship

between meteorological characteristics and load, leading to reduced forecasting accuracy. A day-ahead power load forecasting

model  based  on  meteorological  similar  day  correction  (MSDC)-improved  parrot  optimizer  (IPO)-decomposition-based  linear

(DLinear)  is  proposed.  The  proposed  method  enhances  the  parrot  optimizer  (PO)  by  incorporating  a  logistic  map,  adaptive

mutation strategy, and spiral fluctuation search to optimize the DLinear superparameters. Periodicity and trend characteristics

are  extracted  from  the  DLinear  model.  The  load  forecast  value  is  corrected  by  comparing  the  Euclidean  distance  of

meteorological characteristics. The resulting day-ahead power load forecasting model, IPO-DLinear-MSDC, is validated using

a simulation analysis of total load data from the Zhuzhou area in Hunan from June to October 2024. The model's performance is

evaluated  with  an  average  absolute  percentage  error  (MAPE)  of  4.67%  and  R2  of  0.833,  demonstrating  improvements  of

15.09%  and  23.44%,  and  increases  of 0.074 1  and 0.125 3,  respectively,  comparing  to  IPO-DLinear  model  and  PO-DLinear

model.

Keywords： day-ahead  power  load  forecasting;  meteorological  similar  day  correction  (MSDC);  improved  parrot  optimizer

(IPO); decomposition-based linear (DLinear); Logistic map; Euclidean distance
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