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基于 BiGRU-PLE的电冷热负荷短期联合预测

徐怡豪， 梅飞， 陆嘉华
（河海大学电气与动力工程学院，江苏 南京 211100）

摘　要：准确的电、冷、热负荷预测是综合能源系统运行调度、能量管理的重要前提和基础。利用多元负荷之间存在

能源耦合的特点，文中构建一种基于双向门控循环单元（bidirectional gated recurrent unit, BiGRU）以及渐进分层提取

（progressive layered extraction, PLE）网络结构的多元负荷联合预测模型。首先，通过最大信息系数筛选相关性较高

的气象特征作为模型输入特征；其次，利用 BiGRU 网络对综合能源系统下的多元负荷时间序列进行时间特征提取，

并以此重构数据；然后，针对不同能源相互耦合的特点，提出改进的 PLE 网络结构，通过多级共享特征提取层，达到

从复杂多维数据提取耦合特征的目的；最后，通过改变子任务塔模块结构参数，差异化选择耦合特征信息，输出得到

多元负荷预测结果。实际算例结果表明，文中采用的最大信息系数筛选方法相比传统 Pearson 系数筛选方法更贴合

气象数据的特征选择，且提出的 BiGRU-PLE 多元负荷联合预测模型相比单任务模型能够降低预测误差超 5%，相比

普通多任务模型能够降低预测误差超 3%。
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0    引言

为加快实现“碳达峰、碳中和”目标，推动我国

能源革命进程，亟须建立低碳环保、灵活可调的能

源供应体系[1-4]。以往的单一能源系统缺乏供能灵

活性，很难适应当前我国发展需求。而综合能源系

统（integrated energy system, IES）作为新兴能源耦合

系统[5]，能够实现电、冷、热等多种异质能源的协调

优化、耦合互补[6]。IES在提供社会多类型用能服

务的同时，由于不同类型能量间的耦合特点，其运

行特性更加复杂，显著增加了系统设备运行的优化

调度难度，因而对 IES各类负荷的精确预测提出了

更高要求[7-9]。

在处理单一负荷预测问题方面，传统研究大多

选用机器学习预测方法。在电负荷预测方面，文献

[10]考虑负荷数据和气象信息等，通过改进果蝇优

化算法和广义回归神经网络的平滑因数，提高了预

测精度；在冷负荷预测方面，文献[11]利用关联度

分析法剔除输入变量中关联度较低的因素，采用模

拟退火算法对反向传播（back propagation, BP）神经

网络的权值进行优化，得到冷负荷预测结果；在热

负荷预测方面，文献[12]采用交叉验证确定粒子群

算法的适应度值，并进一步确定最优的正则化系数

和核宽度系数，再基于最小二乘支持向量机实现热

负荷的高精度预测。目前，针对传统单一能源子系

统负荷预测方法已取得较好的研究成果，但随着

IES的出现及逐步应用，这些预测方法无法很好地

处理多元负荷间的耦合特性，因此仅适用于解决单

一负荷预测问题[13]。

近年来，深度学习广泛应用于多元负荷预测研

究，通过设置若干层非线性映射逐层学习大量数

据中隐藏的抽象特征，能较好拟合输入与输出的非

线性关系[14-16]。在多元负荷特征解耦方面，文献

[17]借助混沌理论，采用 C-C法对时间序列进行多

变量相空间重构，挖掘电、冷、热负荷和气象特征

在时间上的耦合特性；针对 IES负荷间关联敏感性

高、季节泛化性差导致的预测精度受限问题，文献

[18]基于动态最大信息系数（maximal  information
coefficient, MIC）构造特征输入变量，并使用变分模

态分解将其划分为多个任务避免整体分解带来的

前瞻性偏差问题；文献[19]提出一种基于长短期记

忆（long short term memory, LSTM）神经网络的编码

器-解码器模型，同时构建多能负荷耦合特征矩阵反

映电、冷、热负荷的交叉影响，采用梯度提升决策

树构建模型的特征融合层，为研究负荷本质特征提

供了多维视角；文献[20]基于变分模态分解和卷积

神经网络挖掘负荷自身规律，再利用双向门控循环

单元（bidirectional gated recurrent unit, BiGRU）网络

得到预测结果，减少模型的计算复杂度；文献[21]
将电、冷、热负荷单元依靠“像素重构”转为图像，

再利用多通道卷积神经网络对重构后的二维负荷

图像进行特征提取融合，最后将综合特征输入 LSTM
神经网络实现负荷准确预测。对于区域型 IES的
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电、冷、热联合预测，多任务学习 [22-24]（multi-task
learning, MTL）通过共享层对多元负荷间的复杂耦

合信息进行特征提取从而提高预测精度。上述研

究并未结合单一负荷和多元负荷分析耦合特性，且

对气象因素考虑不够全面，未充分考虑体感温度等

人体舒适度指标；对于预测对象划分不够细致，未

区分工作日和周末等情况，因此仍存在一定缺陷。

综上所述，考虑到 IES多个子系统之间交互性

强、耦合复杂的特点，针对负荷易受气象因素影响

的问题，文中提出一种基于 MIC的 BiGRU-渐进分

层提取（progressive layered extraction,  PLE）多元负

荷预测模型。首先，通过 MIC相关性分析筛选不同

季节的气象特征，同时将多元负荷时序数据输入

BiGRU神经网络，有效捕获时序数据自身的时间特

征；然后 ，以时间特征重构的多元负荷数据为

PLE网络结构的输入变量，实现多元负荷固有的耦

合信息共享；最后，利用子任务塔模块输出得到负

荷预测结果。该预测模型通过共享外部信息，能够

充分学习多元负荷间的耦合特征，以提高预测精度。 

1    IES 用能特性与 MIC 相关性分析
 

1.1    IES 子能源特性

针对特殊的多元负荷耦合关系，需要对每种负

荷曲线单独进行分析。文中以亚利桑那州立大学

Tempe校区的电、冷、热负荷为研究对象，分析了

电、冷、热典型工作日负荷曲线，负荷数据时间步

长为 15 min，日负荷曲线如图 1—图 4所示。
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图 1   春季典型工作日负荷曲线
Fig.1    Load curves of typical spring weekday
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图 2   夏季典型工作日负荷曲线
Fig.2    Load curves of typical summer weekday

 

从图 1—图 4可以得出，春季电负荷和热负荷

曲线的趋势比较相似，呈现先升后降的特点，而冷

负荷有很大波动；夏季和秋季的电负荷以及冷负荷

走势相近，而两季的热负荷走势则相反；冬季电负

荷和冷负荷变化比较平缓，而热负荷变化幅度较

大。由于该地为热带沙漠气候，因此冷负荷在前三

季都处于一个较高的水平，热负荷只有在冬季才会

用得比较多，电负荷因具有明显的日周期规律性而

全年趋势相对平稳。 

1.2    MIC 相关性分析

MIC[25-26]最早于 2011年提出，属于最大的基于

信息的非参数性探索，其适用于衡量两个变量之间

的关联程度，常用于深度学习的特征选择。与

Pearson线性相关性相比，MIC基于互信息获得线

性或非线性相关性，通过计算样本的网格划分，测

量得到多个变量之间的复杂相关性，为更准确的负

荷预测特征选择奠定基础。该算法具有能够同时

测量线性和非线性关系的优点，计算复杂度低且具

有良好的鲁棒性。具体表达式如下： 

IMIC(x,y) =max
αβ<s

Üx
p(x,y)log2

p(x,y)
p(x)p(y)

log2 min(α,β)

ê
（1）

IMIC(x,y)式 中： 为 随 机 离 散 变 量 x和 y之 间 的

MIC值；α、β分别为横轴网格和纵轴网格的个数；

s为总网格数，一般约为样本数量的 0.6倍；p(x，y)
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图 3    秋季典型工作日负荷曲线

Fig.3    Load curves of typical autumn weekday
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图 4    冬季典型工作日负荷曲线

Fig.4    Load curves of typical winter weekday
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为变量样本落在 x和 y所组成的网格中的概率；

p(x)、p(y)分别为 x、y的边缘概率分布函数。MIC
值的大小可直观反映两个变量的相关性大小，MIC
值大于 0.3，表明两个变量之间具有很强的相关性；

MIC值小于 0.1，表明两个变量之间相关性很弱；

MIC值介于两者之间则表明两个变量具有一定的

相关性。

电、冷、热负荷实验的算例数据来源于亚利桑

那州立大学 Tempe校区的 IES，气象因素初步考虑

体表温度、气温、辐照度、湿度、平均风速、平均风

向、气压、降水量，气象数据从美国国家可再生能

源实验室（NREL）官网采集。通过 MIC相关性分析

得到不同季节各负荷与气象因素的相关性大小，如

图 5—图 8所示。
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图 5   春季 MIC 热力图
Fig.5    MIC heat map of spring
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图 6   夏季 MIC 热力图
Fig.6    MIC heat map of summer
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图 7   秋季 MIC 热力图
Fig.7    MIC heat map of autumn

 

图 5—图 8显示出不同季节 3种负荷与气象因

素之间的 MIC值，揭示了 IES中多元负荷与气象因

素之间的季节差异性，并且可以得出以下结论：（1）
在 IES中，多元负荷与气象因素之间存在明显的非

线性关系；（2） 在不同季节，电、冷、热负荷与气象

因素之间的 MIC相关性大小会发生变化。不同的

季节对应不同的负荷气象特征，以春季为例，对应

的负荷气象特征为体表温度、气温、辐照度、湿度、

降水量。通过季节性动态 MIC相关性计算可以解

决负荷易受气象因素影响、季节泛化性差的问题，

从而提高预测精度。 

2    BiGRU 网络与 PLE 模型结构
 

2.1    BiGRU 神经网络

门控循环单元（gated recurrent unit, GRU）作为

循环神经网络（recurrent neural network, RNN）结构

的一种，由 CHO K等人在 2014年提出[27]，旨在解

决标准 RNN中出现的梯度消失问题，并且 GRU网

络参数数量少，训练时间短，适用于大规模数据

集。GRU网络的基本结构如图 9所示。
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图 9   GRU 网络基本结构
Fig.9    Basic structure of GRU network

 

zt rt

由图 9可知，GRU由更新门和重置门控制。其

中，I为将重置门取反状态再加单位状态； 、 分别

为经过重置门和更新门后的状态向量，重置门的计

算公式为： 

zt = σ(Wz⊗ [ht−1, xt]+ bz) （2）

更新门的计算公式为： 

rt = σ(Wr⊗ [ht−1, xt]+ br) （3）

从而得到新的候选状态的计算公式为： 

h̃t = tanh(Wh⊗ [rt ⊗ ht−1, xt]+ bh) （4）

更新隐藏状态的计算公式为： 

ht = (1− zt)⊗ ht−1+ zt ⊗ h̃t （5）

Wz Wr Wh bz br bh

σ

式中： 、 、 为权重矩阵； 、 、 分别为重置

门、更新门控制器及候选状态的偏置项 ； 为
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图 8    冬季 MIC 热力图

Fig.8    MIC heat map of winter
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tanh ⊗
[ht−1, xt]

h̃t

ht xt

Sigmoid激活函数； 为双曲正切激活函数； 为

对应元素相乘操作； 为当前时刻的隐藏状态

和输入拼接而成的向量； 为当前时刻的候选状态；

为当前时刻的隐藏状态； 为当前时刻的输入。

xt−1

xt+1

在 IES的多元负荷预测中，电、冷、热负荷是时

变的，与前一时刻 的负荷高度相关，并与下一时

刻 的负荷紧密相连。因此，通过更深层次的

BiGRU可以充分提取负荷之间的时间相关性。

BiGRU由正向和反向 GRU组成，其输出由两个

GRU的状态共同确定。BiGRU网络结构如图 10
所示。
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图 10   BiGRU 网络结构
Fig.10    Structure of BiGRU network

 

n hnBiGRU的输出表示为 H，步骤 的输出 可以

计算如下： 

hn = Bi(Hn−1,Hn) n ∈ [1, i] （6）

Bi i

Hn n

式中： 为将 个 GRU输出分别进行正向和反向连

接； 为 GRU中正向的第 个输出。 

2.2    PLE 特征提取网络

针对 IES中能源转换设备多样、能量转换过程

复杂，且各能源子系统通过能量转换元件（热电联

产单元、燃气锅炉等）以能量流的形式紧密耦合的

特性，需要对其进行特征信息提取。由于历史负荷

数据中存在大量能量转换共享信息，而这些能量转

换特征很难用传统的人工特征提取方法概括，且

电、冷、热负荷之间有较强的耦合关系，对多元负

荷单独进行预测往往会忽略该关系，从而影响预测

精度。因此，在 MTL过程中，文中采用一种具有新

颖共享结构设计的 PLE网络结构以共享特征信息，

从而有效利用能量转换过程中的复杂耦合特性[28]。

PLE网络结构如图 11所示。

EAN ,M EBN ,M ECN ,M

ESN ,M

TA,NA TB,NB TC,NC

图 11中，  、  、  分别为在第 N层

第M个专家网络模块 A、B、C； 为在第 N层

第M个共享专家网络模块 S；  、  、 分

别为第 N层任务塔模块 TA、TB、TC。从图 11可以

看出，在底层的特征提取网络中，除了各个面向子

任务的专家网络外，还包含一个共享专家网络，该

专家网络的输入包含所有的原始输入，而各个子任

务的输入由特定专家网络和共享专家网络两部分

k j

组成。并且在上层特征提取网络中，输入的不再是

原始输入向量，而是上一层特征提取网络各输出结

果的融合。任务 在第 层的输出为： 

gk, j(x) = ωk, j(gk, j−1(x))Sk, j(x) （7）

ωk, j(·) k j

Sk, j(x) k j

k

式中： 为任务 在第 层的参数向量，使用其下

层的输出向量作为输入； 为任务 在第 层选

择的专家组。最终任务 的预测为： 

yk(x) = tk(gk,N(x)) （8）

tk(·) k gk,N(x)式中： 为任务 上层面向任务的塔； 为任

务 k在第 N层的专家组选择输出向量。在 MTL
中，使用多个任务的优化目标共同训练，其损失函

数为各子任务损失的加权求和： 

Lk(θ1, · · · , θk, θs) =
k∑

a=1

ωaLa(θa, θs) （9）

Lk(θ1, · · · , θk, θs) La(θa, θs)

a θa a

θs ωa a

式中： 为总损失函数；  为第

个子任务的损失函数； 为第 个子任务的预测数

据归一化值； 为原样本数据归一化值； 为第 个

子任务的损失函数权重。权重的公式如下： 

ωa,T = ωa,0γa,T （10）

ωa,T a T

ωa,0 a

γa,T a T

式中： 为第 个子任务在训练轮数 之后的损失

函数权重； 为第 个子任务未训练前的损失函数

权重； 为第 个子任务在训练轮数 对应的更新率。

在特征提取网络的实际运用中，将电、冷、热负

荷数据分别输入专家网络 A、B、C以提取各自负

荷的特征信息，同时将 3种负荷数据共同输入共享
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图 11    PLE 网络结构

Fig.11    Structure of PLE network
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专家网络 S以提取多元负荷之间的耦合特征信息，

之后将两种特征信息拼接到同一维度。通过 3个

特定专家网络和 1个共享专家网络输出的特征信

息，拼接得到 3个新的专家网络单元和 1个共享专

家网络单元，以此类推得到多层特征提取网络。此

过程在处理相关性复杂的 IES多元负荷预测问题

时，利用分离的共享网络和特定任务网络，逐层学

习和解耦多元负荷之间的耦合信息，因此提高了一

般多任务机制中联合表征学习和信息路由的效率，

使得模型预测准确性进一步提升，同时增强了泛化

能力。 

3    多元负荷预测模型
 

3.1    MTL 预测模型

MTL是一种经典的归纳迁移机制，可以通过共

享层学习其他子任务提供的辅助耦合信息来并行

训练多个子任务[29-30]。在 IES中，传统的人工特征

提取方法难以处理海量数据，而 MTL可以并行处

理和学习多个相关问题的信息，更有效地利用信息

中共享的能量转换特征，挖掘多能耦合关系。考虑

到电、冷、热负荷之间的强相关性 ，一般采用

MTL的硬共享机制，即底层参数统一共享，顶层参

数独立。将多元负荷预测函数定义为： 

yt = ft(xt,Wsh,Wt) （11）

yt t ft t

Wsh

Wt t

式中： 为 时刻的输出； 为 时刻由输入变量和参

数变量构成的多变量组合函数； 为由不同任务

共享的参数； 为 时刻与任务相关的参数。基于

此，MTL的总体优化损失函数可以定义为： 

min
3∑

a=1

ωaLa(Wsh,Wt) （12）

Wsh同时可以获得共享参数 的更新为：  ‹Wsh =Wsh−λ
(

3∑
a=1

ωa
∂La

∂Wsh

)
（13）

λ式中： 为学习率。

不同类型能源的物理动力学和需求特性差异

较大，导致负荷的波动性不同。文中热负荷曲线局

部波动大，上下浮动明显，而电、冷负荷曲线相对平

滑。由于预测模型同一顶层结构无法同时考虑不

同负荷曲线波动特征，3种负荷难以同时达到良好

的拟合状态。因此，采用 3种不同结构参数的任务

塔作为输出模块，使得 3种负荷同时收敛到最优。 

3.2    基于 MIC 的 BiGRU-PLE 多元负荷预测模型

文中提出的基于 MIC的 BiGRU-PLE多元负荷

预测方法如图 12所示。将 IES中的电、冷、热负荷

时序数据分别输入 BiGRU模型，对电、冷、热负荷

时间相关性进行量化处理，得到带有时间特征的状

态输出，作为 PLE特征提取网络的输入；通过多层

的 PLE网络结构并行学习多元负荷之间的耦合特

征信息，有效处理耦合关系复杂的多元负荷时序数

据；最后由子任务塔模块得到多元负荷预测结果。

综合上述分析，基于 MIC的 BiGRU-PLE电、冷、热

负荷联合预测方法步骤如下。
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图 12   基于 MIC-BiGRU-PLE 的多元负荷预测方法
Fig.12    MIC-BiGRU-PLE-based multivariate load

forecasting method
 

（1） 首先对得到的 IES电、冷、热负荷数据进

行归一化等预处理工作，并从定性角度选择对预测

结果有干扰的气象因素：体表温度、气温、辐照度、

湿度、平均风速、平均风向、气压、降水量。关于时

间日期特征的信息包括时间特征（年、月、日、时、

分）以及工作日、周末、节假日等。时间日期特征

按表 1进行编码。
  

表 1    时间日期特征符号及含义
Table 1    Symbols and meanings of time and

date features
 

特征 符号 含义

年 Y 预测点的公历年份

月 M 预测点的公历月份

日 D 预测点的公历日期

时 H 预测点时刻的小时数

分 F 预测点时刻的分钟数

工作日 W 预测点所属日是否属于工作日类型

周末 R 预测点所属日是否属于周末类型

节假日 O 预测点所属日是否属于节假日类型
 

（2） 通过 MIC方法分析全年四季电、冷、热负

荷与气象因素的相关性，由于文中是电、冷、热负
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荷的联合预测，需要统一考虑气象因素对这 3种负

荷的影响。因此对于某一特定气象因素，若与电、

冷、热负荷的相关性中有两项大于 0.1，则将此气象

因素视为有一定相关性，筛选为模型的输入特征；

反之则视为弱相关性，不作为模型的输入特征。通

过上述方法最终筛选得到的模型气象特征如表 2
所示。
  

表 2    不同季节 MIC 值筛选出的气象特征
Table 2    Meteorological features screened by MIC values

in different seasons
 

气象因素 春季 夏季 秋季 冬季

体表温度 1 1 1 1

气温 1 1 1 1

辐照度 1 1 1 1

湿度 1 1 1 1

平均风速 0 0 0 0

平均风向 0 0 0 0

气压 0 0 0 0

降水量 1 0 0 0

　　注：“1”表示筛选为模型的气象特征；“0”表示不作为
模型的气象特征。

 

（3） 将电、冷、热负荷及相关特征影响因素的时

间序列数据进行归一化后输入 BiGRU-PLE多元负

荷预测模型中，其中特定专家网络负责提取单一负

荷的特征信息，共享专家网络负责提取多元负荷之

间的耦合特征信息，将这两种特征信息拼接到同一

维度实现特征信息共享。对选定的典型日中的 3
种负荷进行联合预测，同时调整任务塔输出模块结

构参数，使得 3种负荷的总体优化损失函数最小。

（4） 将得到的预测结果进行反归一化后计算各

评价指标，并与不同模型预测效果进行对比，判断

预测结果准确性是否符合要求，从而验证文中所提

模型的有效性。 

4    算例分析
 

4.1    数据采集和处理

文中以亚利桑那州立大学的 Tempe校区为研

究对象，分析电、冷、热负荷之间存在的耦合特

点。该校区拥有 288栋建筑、5万多名学生和 73 190
块太阳能光伏板。实验算例数据来源于 Tempe校

区的 IES电、冷、热负荷数据以及 NREL官网上的

气象数据，气象因素初步考虑体表温度、气温、辐

照度、湿度、平均风速、平均风向、气压、降水量，

日历规则考虑工作日、周末及节假日情况。数据选取

自 2017年 1月 1日—2018年 12月 31日，每 15 min
采集一次数据，按 7∶2∶1划分为训练集、验证集

和测试集。 

4.2    评价指标

鉴于文中搭建的多元负荷预测模型需要在同

一时间段内对多种负荷类型进行结果分析，因此

文 中 选 用 平 均 绝 对 百 分 比 误 差（mean  absolute
percentage  error,  MAPE）、均方根误差 （root  mean
square error, RMSE）和平均绝对误差（mean absolute
error, MAE）作为评价指标。具体表达式如下： 

EMAPE =
1
m

m∑
c=1

∣∣∣∣ ŷc− yc

yc

∣∣∣∣×100% （14）
 

ERMSE =

Õ
m∑

c=1

(yc− ŷc)
2

m
（15）

 

EMAE =
1
m

m∑
c=1

|ŷc− yc| （16）

yc ŷc

m

式中： 为样本 c的实际值； 为样本 c的预测值；

为参与计算的样本数量。 

4.3    模型参数设置

模型的结构设计及超参数取值会直接影响预

测结果的准确率，为得到文中模型的最优结构参

数，采用控制变量法确定 BiGRU网络参数和

PLE网络参数的值。

由于文中是电、冷、热负荷联合预测，因此需要

设置 3个子任务模块和 1个共享模块。经实验可

得，将特征提取网络设置为 2层最佳，用以提取和

共享负荷间的耦合信息。对于顶层任务塔输出模

块，设置电负荷和冷负荷预测模块隐藏层为 2层，

每层隐藏层大小为 32个神经元，而热负荷预测模

块隐藏层为 1层，隐藏层大小为 64个神经元；设置

Dropout层的失活率为 0.1，以避免过拟合 ；选用

Sigmoid作为激活函数。BiGRU网络和 PLE网络

的超参数设置分别如表 3、表 4所示。
  

表 3    BiGRU 网络参数设置
Table 3    Parameter setting of BiGRU network

 

BiGRU网络超参数 数值

隐藏层层数 2

隐藏层神经元个数 32

失活率 0.2
  

4.4    预测结果对比分析

为验证基于 MIC的 BiGRU-PLE模型预测的准

确性，将文中所提模型与另外 4组预测模型进行对

照分析。4组对照模型分别为 LSTM模型、BiGRU-
MTL模型、BiGRU-PLE模型以及 Pearson-BiGRU-
PLE模型。前 3组对照模型不经过气象特征筛选，

第 4组对照模型经过 Pearson相关性系数筛选气象
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特征。实验选取夏季和冬季的典型工作日和典型

周末作为预测场景，对每个场景进行未来 24 h的多

点预测，采样间隔为 15 min，共 96个预测点。最后

根据电、冷、热负荷预测结果计算评价指标。 

4.4.1    电负荷预测效果分析

在夏季电负荷预测中，选取 2018年 8月 1日为

典型工作日，2018年 8月 4日为典型周末；在冬季

电负荷预测中，选取 2018年 12月 1日为典型周末，

2018年 12月 3日为典型工作日。电负荷预测结果

和评价指标如图 13—图 16和表 5所示。
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图 13   夏季典型工作日电负荷预测曲线
Fig.13    Electric load forecast curves of

typical summer weekday
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图 14   夏季典型周末电负荷预测曲线
Fig.14    Electric load forecast curves of

typical summer weekend
 

在电负荷预测曲线中可以看到，季节的更替对

电负荷需求的影响不大，并且周末用电比工作日用

电稍微偏低；在模型预测方面，典型工作日的预测

准确性普遍高于典型周末，工作日用电习惯更加规

律，易提取并学习其中的信息特征，模型训练拟合

效果更好。从计算预测评价指标可以得到，与 LSTM
单任务学习模型相比，MTL模型对复杂多维数据的

特征学习能力更强，BiGRU-MTL模型相较于 LSTM
模型 MAPE降低了 16.56%；而 BiGRU-PLE模型比

BiGRU-MTL模型 MAPE下降了 3.99%，说明通过

PLE特征提取网络可以更好地得到负荷间的耦合

特征，实现特征信息的共享；Pearson-BiGRU-PLE模

型相较于 BiGRU-PLE模型 MAPE降低了 11.63%；

文中所提模型通过 MIC相关性分析筛选重要的气

象特征作为模型输入，相较于 Pearson-BiGRU-PLE
模型 MAPE降低了 7.38%。综上，文中所提模型相

 

表 4    PLE 网络参数设置

Table 4    Parameter setting of PLE network
 

PLE网络超参数 数值

特征提取层层数 2

失活率 0.1

学习率 0.001

优化求解器 Adam

目标损失函数 Huber Loss

限制迭代次数 150

批样本数量 128
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图 15    冬季典型工作日电负荷预测曲线

Fig.15    Electric load forecast curves of
typical winter weekday
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图 16    冬季典型周末电负荷预测曲线

Fig.16    Electric load forecast curves of
typical winter weekend

 

表 5    电负荷预测评价指标

Table 5    Evaluation indexes of electrical load forecasting
 

预测模型 MAPE/% RMSE/kW MAE/kW

LSTM 8.943 903.843 804.843

BiGRU-MTL 7.462 861.347 717.843

BiGRU-PLE 7.164 749.247 657.757

Pearson-BiGRU-PLE 6.331 696.752 603.397

MIC-BiGRU-PLE 5.864 619.934 529.164
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较于其他对照模型在电负荷预测准确率方面有一

定程度提升。 

4.4.2    冷负荷预测效果分析

在夏季冷负荷预测中，选取 2018年 8月 1日为

典型工作日，2018年 8月 4日为典型周末；在冬季

冷负荷预测中，选取 2018年 12月 1日为典型周末，

2018年 12月 3日为典型工作日。冷负荷预测结果

和评价指标如图 17—图 20和表 6所示。
 
 

0

45 000

40 000

35 000

30 000

25 000

20 000

20 40

冷负荷数据点

冷
负
荷

/k
W

60 80 100

实际值 LSTM BiGRU-MTL BiGRU-PLE

Pearson-BiGRU-PLE MIC-BiGRU-PLE

图 17   夏季典型工作日冷负荷预测曲线
Fig.17    Cooling load forecast curves of

typical summer weekday
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图 18   夏季典型周末冷负荷预测曲线
Fig.18    Cooling load forecast curves of

typical summer weekend
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图 19   冬季典型工作日冷负荷预测曲线
Fig.19    Cooling load forecast curves of

typical winter weekday
 

在冷负荷预测曲线中可以看到，季节的更替对

冷负荷需求的影响很大，夏季高温干燥，冷负荷需

求量显著提升，冬季温度下降，冷负荷需求量也随

之降低；冷负荷在周末和工作日的用量水平基本相

当。在模型预测方面，夏季典型日的预测准确性普

遍高于冬季典型日，由于夏季冷负荷用量很大，因

此规律性呈现更加明显，易被模型学习提取变化特

性，模型训练拟合效果较好。从计算预测评价指标

可以看到，与 LSTM单任务学习模型相比，BiGRU-
MTL模型的 MAPE降低了 18.95%；BiGRU-PLE模

型比 BiGRU-MTL模型 MAPE降低了 14.90%，表明

建立合理的多任务信息共享机制可有效提取 IES
的多元负荷耦合信息；与 BiGRU-PLE模型相比，

Pearson-BiGRU-PLE模型的 MAPE降低了 14.36%，

说明合理的气象特征筛选可提高预测准确率；文中

模型的气象特征经过 MIC筛选，相较于 Pearson相

关性分析的 BiGRU-PLE模型 MAPE降低了 6.65%，

证明文中所提模型在冷负荷预测准确率方面有较

大提升。 

4.4.3    热负荷预测效果分析

在夏季热负荷预测中，选取 2018年 8月 1日为

典型工作日，2018年 8月 4日为典型周末；在冬季

热负荷预测中，选取 2018年 12月 1日为典型周末，

2018年 12月 3日为典型工作日。热负荷预测结果

和评价指标如图 21—图 24和表 7所示。

在热负荷预测曲线中可以看到，季节的更替对

热负荷需求的影响同样很大，夏季热负荷需求量较

低，冬季热负荷需求量有很大提高，热负荷在周末
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图 20    冬季典型周末冷负荷预测曲线

Fig.20    Cooling load forecast curves of
typical winter weekend

 

表 6    冷负荷预测评价指标

Table 6    Evaluation indexes of cooling load forecasting
 

预测模型 MAPE/% RMSE/kW MAE/kW

LSTM 10.764 2 753.394 2 056.986

BiGRU-MTL 8.724 1 862.422 1 386.739

BiGRU-PLE 7.424 1 535.281 1 237.711

Pearson-BiGRU-PLE 6.358 985.360 728.471

MIC-BiGRU-PLE 5.935 924.517 654.179
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比在工作日略有下降。在模型预测方面，文中所提

模型在热负荷预测准确率方面提升较小，相比

BiGRU-PLE模型 MAPE预测精度仅提升 6.84%，这

与数据收集地区的环境因素有很大关系。亚利桑

那州立大学处于热带沙漠气候，常年高温干燥，一

年中大部分时间都处于夏季，冷负荷需求显著高于

电负荷和热负荷，而夏季的热负荷属于刚性负荷，

需求较少且相对固定，负荷曲线虽然小突变较多但

走势较稳定，与电、冷负荷的相关性不强，因此基于

历史时间序列数据对于热负荷预测精度的提升相

对较低。 

5    结论

针对 IES存在的多类子能源交互耦合特点，文

中提出一种基于 MIC相关性分析的 BiGRU-PLE多

元负荷预测模型。该模型通过 MIC理论筛选得到

相关性高的气象特征作为模型输入，利用 BiGRU
网络对多元负荷时间序列提取时间特征并重构时

序数据，将所得结果输入 PLE网络结构，并行学习

多元负荷之间的耦合特征信息，通过 2层特征提取

网络和 3个特定结构参数的子任务塔输出模块，得

到多元负荷预测结果，避免了冗余信息对预测过程

的干扰，从而提高了多元负荷预测的准确性。通过

算例分析可以得出以下结论：

（1） 电、冷、热负荷与气象因素特征、时间日期

特征之间具有很强的相关性，影响程度各不相同。

经过 MIC值筛选后将相关性较高的气象特征输入

模型，预测精度可以得到一定提升，证明了基于

MIC相关性分析的输入特征选择的有效性。

（2） 在 3种负荷的预测结果中，电负荷在时间

维度上具有显著的周期规律性，受外界因素影响最

小，故预测精度最高。而冷、热负荷易受气候环境

因素的影响，数据曲线会产生较大的突变和波动，

因此模型训练学习效果不如电负荷，导致预测精度

有所降低。

（3） 文中提出的 MIC-BiGRU-PLE组合模型预

测精度相对最高，证明 PLE网络结构能够充分学习

 

表 7    热负荷预测评价指标

Table 7    Evaluation indexes of heat load forecasting
 

预测模型 MAPE/% RMSE/kW MAE/kW

LSTM 9.975 2 745.342 2 284.737

BiGRU-MTL 7.885 2 429.394 1 939.046

BiGRU-PLE 6.474 2 178.737 1 661.754

Pearson-BiGRU-PLE 6.159 1 981.573 1 569.924

MIC-BiGRU-PLE 6.031 1 942.741 1 536.847
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图 21    夏季典型工作日热负荷预测曲线

Fig.21    Heat load forecast curves of
typical summer weekday
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图 22    夏季典型周末热负荷预测曲线

Fig.22    Heat load forecast curves of
typical summer weekend
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图 23    冬季典型工作日热负荷预测曲线

Fig.23    Heat load forecast curves of
typical winter weekday
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图 24    冬季典型周末热负荷预测曲线

Fig.24    Heat load forecast curves of
typical winter weekend
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并共享多元负荷之间的耦合信息，相较于传统预测

模型更能体现其显著优势。

文中在考虑 IES多元负荷的影响因素时，并未

涉及极端外部环境影响导致的负荷突变，此外，电

动汽车的大规模使用也是影响负荷变化的重要因

素，在后续研究工作中会将以上作为研究重点。
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Mitigating subsynchronous resonance using supplementary damping control of battery
energy storage in a wind-thermal-storage bundling system

HU Yongqiang1,  WANG Xi2,  WU Linlin3,  XIE Xiaorong2,  BU Haitang1,  SU Tianyu3

(1.  Beifang Duolun Renewable Energy Co., Ltd., Xilingol League 027200, China; 2.  Tsinghua University (State Key

Laboratory of Power System Operation and Control), Beijing 100084, China; 3.  North China Electric Power

Research Institute Co., Ltd., Beijing 100045, China)

Abstract：Subsynchronous resonance (SSR) caused by the interaction between thermal power generators and series-capacitor-
compensated  AC  lines,  has  been  a  significant  concern  in  China's  power  grids.  An  energy  storage  supplementary  damping

control  (SDC)  to  suppress  SSR  is  proposed  in  this  paper.  SDC  enables  local  feedback,  and  utilizes  the  coupling  between

generators and power grid to enhance the overall damping level. Firstly, the target system is modelled and the mechanism and

characteristics of its SSR problem are clarified through frequency and time-domain analyses. Then, the supplementary damping

control strategy is established based on battery energy storage system (BESS). Its control parameters and adding positions are

optimized,  and  the  impact  of  SDC's  control  capacity  on  BESS's  normal  functions  is  analyzed.  Finally,  the  effectiveness  and

feasibility  of  the  proposed SDC are  verified  through electromagnetic  transient  simulations  with  a  real-world  project,  i.e.,  the

Shangdu wind-thermal-energy storage bundling system. The simulation results also show that the proposed SDC can effectively

address the SSR issue with reduced control cost and equipment investment cost, serving as a more economical solution.

Keywords： subsynchronous  resonance  (SSR);  supplementary  damping  control  (SDC);  resonance  mitigation;  battery  energy
storage system (BESS); wind-thermal-storage bundling system; series compensation
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BiGRU-PLE based short-term joint forecasting of electric, cooling and heat loads
XU Yihao,  MEI Fei,  LU Jiahua

(School of Electrical and Power Engineering，Hohai University，Nanjing 211100，China)

Abstract：Accurate  forecasting  of  electric,  cooling  and  heating  loads  is  an  important  prerequisite  and  foundation  for  the
operation  scheduling  and  energy  management  of  integrated  energy  systems.  Leveraging  the  energy  coupling  characteristics

between  multivariate  load,  this  paper  constructs  a  joint  prediction  model  for  multivariate  load  based  on  bidirectional  gated

recurrent units (BiGRU) and a progressive layered extraction (PLE) network architecture. Firstly,  the meteorological features

with  high  correlation  are  screened  as  input  features  of  the  model  through  the  maximum  information  coefficient.  Then,  the

BiGRU network is used to extract the temporal features of the multivariate load time series under the integrated energy system

and reconstruct  the  data  in  this  way.  Secondly,  for  the  characteristics  of  different  energy  sources  that  are  coupled  with  each

other,  the improved progressive hierarchical  extraction network structure is  proposed, and the coupling features are extracted

from the complex and multidimensional data through the multilevel sharing of the feature extraction layer. Finally, by changing

the structural parameters of the sub-task tower module, the coupled feature information is differentially fused, and the multiple

load  prediction  results  are  obtained.  The  actual  example  results  show  that  the  maximum  information  coefficient  screening

method  adopted  in  the  article  is  more  suitable  for  feature  selection  of  meteorological  data  than  the  traditional  Pearson

coefficient screening method, and the proposed BiGRU-PLE multivariate load prediction model can reduce the prediction error

by more than 5% compared with the single-task model, and by more than 3% compared with the common multitask model.

Keywords： bidirectional  gated  recurrent  unit  (BiGRU);  maximum  information  coefficient;  coupled  feature  extraction;

multivariate load forecasting; integrated energy system; multitask learning
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