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Fig.1 Load curves of typical spring weekday

40 000 | — IR

i
35000 [ — H i i

E 30000 f

#g 25000 |

20000} o/ \'
15000 | bQ

10 000 = ’ '
0 20 40 60 80 100

Hodhi

2 BEFHRTIEHARHE
Fig.2 Load curves of typical summer weekday
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Fig.3 Load curves of typical autumn weekday
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Fig.4 Load curves of typical winter weekday

MIEL 1—[&] 4 w] LAA Y, 56 2 H 600 £ F11HA 97
i 2 kB L BARAL, 2 BESE TS R AR A, T
Gt A AR K Bl B 7 RIRK 2= 1) FL 17 LA R 8 1 A
A FRH AT, TP 2 A0 A AT I SN AR 5 A 2R L BT
iy RV B A A2 Ak L B3 22, T AR B iy 722 T e R 5
Ko o T P Ve, DRIV 7 £ AT =
AL T — B K, Bp LA R T4 2
A5t 2, i fg DB B S0 H R SR A 1
EoaB SR EPOR e
1.2 MIC X ES

MIC R LT 2011 4R, JB TR SET
R B RAES B R R, HAE T B A2 i 22 ()
RO B, WM TR # I R R e #E . 5
Pearson £k P4 Al S PR AH H, MIC & F H.A5 B IR 15 £k
PEB AR L M AR SCPE, 38 T AR A B R A% R 43,
TSR 28 B 2 8] A 52 2R S, Sy BE A ) £
o TN A OE B 5 B BR A o 15 LA B [
D PR AE O R PR, TR R AR H A
A RAFR e, BARRRT:

[ pe.yytog, 22

hoc(y) = pOPe) |
c(x.y) rf%ili( log, min(e, 8) W

3 hae(xy) 9 BE HL B HOAS & x Ay 22 (8] 1Y
MIC {EL; @, 5353 ha A il 1) 4 R0 Bk 190 s ) 1 2
s NSRS KL, — IBEZ D FEAR B Y 0.6 15 p(x, )



2 HEHEAR 112

Ry AE EREAVEAE x Ry BT 4L ARG A A A R
p(x). pO) 4N x|y B GRS A BR AL . MIC
EL AR RS /IN T 08 52 B 7 A4 725 5 ) A DG 1 R/, MIC
HRTF 0.3, FBA WA A8 & 2 [A] 2 A AR 5 10 40 56
MIC fE /N T 0.1, & BH WA A8 7 22 [8] AH DG AR 555
MIC {E A T W5 35 2 (8] D) % W A4~ 722 i BT — 22 1Y
AR

HL L ¥& L AE S S 1) AR 5 ok TR T IE R 5%
AR 37 K2 Tempe £ X 9 TES, KL HE VI % 1&
RFIRSE SR R IR P RGEE | T35
m, SR FEKE, G EE N 36 [ [ 50T PR g
J8 550 % (NREL) B WR4E . 3843 MIC AHC M5B
1 BIARTR 22 4% g 55 B R AR, o
[l 5—[&l 8 iz o

MIC/H

1.0

H A g 0.228 0.223 0.262 0.154 0.074 0.096 0.070 0.104 Mo g
0.6

0.337 0.362 0.294 0.262 0.070 0.078 0.093 0.126

=
=
=t

(=)

~

0.154 0.136 0.142 0.129 0.034 0.089 0.113 0.053 |192

e U EIE RE T T AUR BOKR
B R A

B 5 &ZMIC#HAE
Fig.5 MIC heat map of spring

B
b=y
=t

MIC{E
1.0

0.334 0.254 0.289 0.179 0.089 0.090 0.075 0.084 M 0.8

0.6
.. 0.314 0.251 0.106 0.082 0.095 0.112 0.4

5 0.168 0.139 0.124 0.081 0.046 0.078 0.074 0.062 |10-2

0
A AR R R P P U Bk
R WaE A

E6 EZ= MIC#ANE

Fig.6 MIC heat map of summer

¥ &
2
S

B
=y
5

MICTH

1.0

H g 0.132 0.187 0.317 0.130 0.057 0.081 0.098 0.084 ¢ g
0.6

YRRy 0.261 0.367 0.035 0.051 0.119 0.078 04

HATF 0.276 0.239 0.123 0.263 0.040 0.062 0.090 0.110 |10-2

0
(k% U IR R T T AUE MR
L Rt A

B 7 #ZF MIC#HE
Fig.7 MIC heat map of autumn
Kl 5—K 8 o AR 25 3 Al gy 54 N
FEZIE MIC {H, #8758 T 1ES h Z ot fifif 54 M
BRI 2= 22 Sk, JF BT DA DU 460 (1)
7E IES W, Z e 5 LR N R Z AR B A AR
MR (2) TEARRI TS, % A 5 AR
2R Z [\ 5 MIC AHME RN R AR . AN TR

MICTE
1.0
HLffr 0.129 (0.193 10.308 0.144 0.075 0.086 0.078 0.072 M (3

0.6
¥ Aife 0.137 0.183 0.257 0.220 0.083 0.085 0.093 0.087 0.4

T .. 0.166 0.309 0.045 0.083 0.110 0.106 |1°-2
0

R R RIREE R P P A FBOKE
NS R )

E8 %ZZFMIC#HANE
Fig.8 MIC heat map of winter
Z 10 AN [ B8 S R AL, LAAR R 19, X )
AT G R IE AR R IR | AR 4 BREE L TR
Rk & o 3 25 PR Bl A MIC A DG 53 AT LR
R by 32 G R ZE iz A 22 1Y R)
AT fi v TRLARS JE

2 BiGRU M#%5 PLE =& 45

2.1 BIiGRU HZ M 4%

IJ 4 96 ¥ 5.0 (gated recurrent unit, GRU)YE A
1% I 14 22 A 4% (recurrent neural network, RNN) 28 #4
f)—Fh, tH CHO K 45 AAE 2014 4E 48 1 27, B 15 fif
TRARAE RNN A A 46 B2 T 2k () 8, JF B GRU
2 2RO R /D, NGk TR, 3 T R R A s
. GRU MZE AL AR 9 s .

hH

I_
HE

1
x, HOE
B9 GRU MZHEALEM
Fig.9 Basic structure of GRU network

Hi[&1 9 RN, GRU py BT I AN B 15 ehil o G
b O E R T T IROSCIRAS B AR 2,4 r 2300
N e A VAR A RS ), R AT
BAAR:

z=0cW,®[h._,x]+b,) (2)
BB TR A N
rr=0c(W.®[h,_,x,]+b,) (3)
AT B 1 e R A B 3 A =
h, = tanh(W, ® [r,® h,_,,x,] + b;) (4)
OB RS T A R
h,=(1-z)®h,  +z,®h, (5)

it':'j Wz\ Wr\ Whjﬂ*/zi%ﬁ%, bz\ b,\ bhé}%Uj‘jiﬁ
1 BB I A ) A B g RS B i B T o



113 #tasE 45, 2T BIGRU-PLE HY 4 $A 67 1oy 4 401166 4 Fitm)

Sigmoid 4 1 PR%L; tanh Ry BT IE YIS BRERG @R
X I TG AR TRHRAE; [y, x, 10 24 R 20 ) BRORIR 2
IR A B T 004 1] 02t T, 9 224 T 20 P A bR 245 5
B, R ST 2 BRIECIRAS s xR AT ZI A

1E 1ES [ Z oo far W, o, ¥ | A i S )
AR, ST — B 2, BT AR DG, IR 5 TR — i
Zx, W B0 fr A . PR L, G IR 2 R
BiGRU [ DL 78 43 $& B 71 far 22 [] B9 Bsf [i] A O 1
BiGRU M 1E ] A1 52 1] GRU 41 A%, H: %t iy 95 4>
GRU AR S L [H 8 2 . BiGRU M £% 25/ A& 10
Fim o

h h,. h,.,
X X1 X2

B 10 BiGRU W% %:#
Fig.10 Structure of BiGRU network

BiGRU A%t 2k H, A B n i H h, 7T LA

HET:

h,=B(H, ., H,) ne[l,i] (6)
Kb B i GRU %t 43 52647 1F 1a] Fl R () 34
$; H,”) GRU HIE [ B 5 n i o
2.2 PLE $#{EREM %

EIXF IES W RE IR £ 2 4F | RE it 72
2%, HAREIR+ 2 G0l o fg it e 4 oo 14 (A ik
PRI B AR ) LLRE i B X B RS
FEME, T BN AT RAE S B BT Dy S A AT
AR A fE KRB R R IL (R B, X LU g i %
o A1 AR ME A% 48 19 N TR AR $2 O 5 A 45, B
B, ¥ AR 22 (B AT BRI RE G OCR, XTIt
fap BAHUHEA T FIUI AT 25 W12 G B, DTS5 e o]
KSR P, 78 MTL s B v, SO R B —Fh A8
AL E LT PLE W25 2544 DUIL 2R AR 2,
T A 2500 P s o 7 v 4 2 A B v Y
PLE M4 Z5Mani&l 11 foR o

1LY, Eayn < Esyu « Ecyu 00 HHESS NJZ
B MALERMERI A B, C; Es, , NTEZE NJZ
9 M AL T NERIES; Tan, « Tony « Tene o7
BREE N BT S5 IERE Ty Ty, Teo M 11 0L
F 7RI 2 B RRAE SR O 45w, BR T A4 T ] T
fE55 1 & KNS, b & — D=L KN, %
LR L (A AL B BT A R S IR R T 4SS AT
55 B A AR A & 5 I 4% F e 52 SR 48 PR 43

LI
R T T
LRMUEA LRM%B LHRMAEC || FEEH RS

WHERBRSY N N N ]
"_:'_'_:'_1_::::::::::'_%}%@%@?:'_'_'_'_'_'_'_'_'_'_t'_'_'_'_'_'_‘:
LRMEB | GRMEC It xS

| BRMAA

S IEA) TS HEB) TS EEC)
B N R
! [ 1 PR | PR
1 T 1 T 1 N
| L L !

B 11 PLE ML

Fig.11 Structure of PLE network

Ml IF BAE )RR R 25 b, g A RS P
b A T, T b — 2RI 4R L 28 25 i 1 45
RBR G o RS RAESS jJZ MR A

8i;/(X) = 0 (g j-1(X))S; ;(x) (7)
K o, ()AL ES jR S B &, T
J2 By i L T AR AR Sy (0) AT 55 KTESR jIR
PR RA . AT 55 kT A

Yi(x) = (g (X)) (8)

K 6, ()AL kL Z T AL 55 B3 gun(0) W AT
% kTESE NJZW L FA LB H M & . 7E MTL
b, il 2T 55 m9 oAk B RS [R]I Zr, HA2K R
O AT 55 1R B INAS R A

k
Lk(gl"" ’91(995) = Zwal‘a(guags) (9)
a=1

P L6, 6,600 S0 K R 8G L(6,,0,) 95
a ™ TALS R BB EG 6,058 a > 74T 55 1 B 4
P — A8 0,8 BAEAS G 10— w0, 5 a >
TAE S5 A2 R IR . AU AR T
WOur = Bag¥ur (10)
K 0,0 W a N FALFSTENGR T T Z 5 R
PRBAHL 5 0,0 M 26 a > FAT 55 AR VN GRET 940 2K pREK
I3 yor NERa AR AENRESELT X A%
TEFFE R IR 25 1 S Bras HIvh, o r | v #A R
T R Bl AL R4 AL B, C LIREL A
Taf AARFAEAT B, [RIBPRE 3 b o gy 25 0 e [l iy A =2



2 HEHEAR 114

LR MY S LIS B Z ot i 2 18] AR & FRIE S &,
ZJE K PR AE S S BRI A — 4R . it 3 A4
P 5E L SR 1 A>3 72 S 268 i Y 1) R A
B, PHERR] 3 F L K M4 oo 1 A e
F ML I, DI HER 2 2 R R bR IR 45 . 1t
o TR AL BEAH SC R 52 44 TES 225 B fr 0 [ et
F, A 23 2 ) 3L R 2% R AT 55 M 4%, B SR 27
] Mgl 2 ou i Z A ARG 15 8L, PR 1 —
P2 AT S5 AL v B G FRAE 27 > A B Hh A AR,
(AT R 0 o Wi P — 2P B T, [RIINE o T2 4k

A1
3 ZuAfamlEs

3.1 MTL Fifl45

MTL & —Fh g B IF ghaE ML, AT DL i
)R ) o AT 55 B A B 4 B R 615 Bk IT AT
WEEZATAES . 15 1ES W, £ 5859 N THHE
P& T V8 M DA K B A4, 1 MTL AT DL R47 4k
PR 2] Z2AAH S IR B 15 8., B8 A 5 A4S B
rh 2L (g B R AR E, IR SIS L R, Ik
R % AR AT R YRR AE O, — R
MTL e =ML, BUR RS S — L=, 22
BOMST o ¥ Z2 e BN sk ECE R

Y= fi(x,, W, W) (11)

by O e ZN B 5 f O o) 220 s A RS
B R Y 2278 2 G PR AG W ol B AT 55
W SHG W 2 SR 5 S 8. &£ T
I, MTL A SR A 2% pR R AT LU LR

3
min Y ,L(Wa, W) (12)

a=1

[ F ] DASRAF L S 2R W, B ST N
oL

sh

: ) (13)

3
W;h:Wm_/l( W,
2 gy

A AR R,

AN R 2SR BE VR 19 4 B By ) 25 AT SR AR 25 5
R, FES s AR SCrh T 2R
W sh K, bR EFsh IR, mH . A G 2R X
W o F T TR ARE R ] — T )23 5 44 JT ¥k W) B 2 A
Ivi] 473 A {1 £ % SHARFAE, 3 b 67 A X LA ) Bsf 3k 31 B 47
FIPELEIRA . B, R 3 FOR RIS/ S 81T 55
EEAE Mt A, (15 3 Foh gy [] IS B
3.2 EF MIC i BiGRU-PLE & T ATl s

SCH A 3T MIC B9 BiGRU-PLE £yt i far
I EEIE 12 s, # 1ES thy | & A fir
B T HHE 43 % A BiGRU B0 XFrE . ¥ . $I 7 fif

I 8] A S PR R AT AL AL B, 15 23 A I 1A) R AE iR
Ak, 1E R PLE FAE S EUW 45 05 A il £ )2
[ PLE [ 26 45 48 H- 47 2% > 22 50 B faf 22 [] () R B
A B, A R RS & OC 2R B 4= 1) 2 J0 17 1o i) T 4K
Pt 55 AT 55 A 31 22 50 B far F0I0 245
ZEA ik, 2T MIC ) BiGRU-PLE Hi | &, #1
B FI5E A FO kAP SR AN R

H AR [P S| (R BARRE E TEDREAE

() &= [ )
E'_'_'_'_'_'_'_'_'_'_'_'_'?:lﬁ%ﬁ})'%jé i
ezl | A
E% HEI—f

{5 IEA {4358 E458C
o o o
S L0 209 2 1.0 A
| 0.8 07 f/\/\ /108
0.6 s \ o Z0er S
=04 Z \ \f iE 0.4 \\\ mr/
o2l . . ®O03 L0220 NS,
0 20 40 60 ¥ 020406080 % 0 2040 60 80
HdE p HHE pi HE
FEL 471 fif TR A 471 A TR FRA S T

12 ETF MIC-BiGRU-PLE B % JT At Tl 5 5%
Fig.12 MIC-BiGRU-PLE-based multivariate load
forecasting method

(1) 51520 i 1ES HL . ¥ PO far B4 it
T — LA AL 3 T AR, I DA P 1 3 358 3 0F 0
SRA T RE R E: RFRIRE . R R
MREE SR RGE | SE R SR BRKE . TR
E] H W AE B9 (5 B A FE I [ RRAE (45 . H L H L B
SOV TAER R, WA B B BIRE
P 1 AT St

*1 HEBEFEFSREN

Table 1 Symbols and meanings of time and
date features
FHAIE s P4
4 Y T K50 28 D A
A M TR 2 3 A A
H D T A 2 13 H 3
i H AU R P 220 4 /DN
i F U A P 220 6 23
TAEH w T i) 2 s T AR H 28 A
JAR R T T H R AR T AR
Fifi H o TS ATE H AR T ik H 2

(2) @it MIC J5iErHr A AE e | v | i fi
7 5 AR R AYHSCHE, T30 2R % i



115 #rthzE 4. BT BiGRU-PLE it B, ¥4 AWt i e S B56 45 T

faf FYHR G T, 5 2248 — B BRI R XX 3 Fp i
T RE I . R TR E LN R, & 5.
7 AT AR DG AT PRI F 0.1, PR <4
PR 28 WL R A — 2 R D, O 8 DA A5 78 (9% i A RRAIE 5
S22 WU A 550 Sk, AN AR RS 8 1) g AREAIE .
b bR 5 v A A 5 B B B SR RRE AN 2
JiN o
®2 AEZET MIC EFEHNSKEE

Table 2 Meteorological features screened by MIC values
in different seasons

SERE HF HE B A7
R E 1 1 1 1
i 1 1 1 1
HRIR 1 1 1 1
AL 1 1 1 1
2 X 0 0 0 0
-2 XU 0 0 0 0
IE 0 0 0 0
Rk 1 0 0 0
T 1 FoR I AR SR AHIE; 07" R AMEN
RN SR AFFIE

(3) W el & L AR far KA SCHRRIESE i PR 28 1)
) 7 50 B4 £ 47 5 — 1k J5 i A BiGRU-PLE £t 11
o OO ASE AL o, Horh R G 4% 17 B FR LR — 17
ff Y RFIEAR S, HeZ2 % RIS th 5T 2 I Je i g 2
] AR A FRRIE A5 S, K X PR R AR A B PR 2 W] —
Y B SRR B AL Xk S R | Y 3
Fofr 67 fp PR AT IR T, i) 9 AT 55 M i ) A e
FIZE, 845 3 B s i) SR DR AL 2% iR Bl e /N o

(4) W A3 p T &5 R A7 ROH— b e T A
PENFE AR, I A5 [R]85 AU 35 0 R0 SR 847 %58 e, 4]
TOUIN 285 SR AER PR R A AT BEOR, DT g6k SC 4
R (A 350

4 EHISH

4.1 HIRFEMAIE

SCHR DI A S B M 7. K 2= 1 Tempe A% X A Aiff
FERTGE, Sy BT EL L ¥R L I T 22 B AEAE DR A R
Mo ARSI 288 MREESR . 5 T 24441 73 190
He R BHBE AR AR o 256 5491 5048 SR JR T Tempe 4%
XAy IES HL, ¥ #46 far 4546 LA S NREL ‘B M L (%)
S48, KL WEN L EEREXRE . <R, H
U AT AN G5 DAY SN o o TR WA ) & i 8
HIOTHUMZE & TAEH | AR BT HAEN . BdEikE
H 201741 H 1 H—2018 4F 12 A 31 H, % 15 min
RBE— B, #5270 2 - 1R A g dE L RIESE

FT 4
4.2 FNERR

YT S0 R ) Z2 T B ey T AR R AE (]
— I 1] B P X6 Z2 i 171 fap 28 B E A7 45 21 43 B, IRk
e H ¥ 48 X E 43 L R 22 (mean absolute
percentage error, MAPE) . ¥J 5 #R i% 24 (root mean
square error, RMSE) FI-F- 4 {6 %] 1% 2% (mean absolute
error, MAE)1E A TEM P bR . EARFR IR0

_ i — yr_yc
By = — Z = x 100% (14)
Z(yv_.i}\c)z
Eryse = R (15)
m
1 &
Eviag = ;;b’c_)ﬂ (16)
Ky WAEA ¢ I SEBR1E; Y N FEA ¢ 1Y T A ;
m NS 5 RIS .

43 HEESHIGE

BRI (14 25 ¥ 152 1 B o S B0 25 5% T Tl
D235 5 9 M Bt 2%, SR A5 3] SC R SR ) B R 25 4 =
B, R H 45 i AR & 3L o BiGRU W 4% 2 M
PLE M4 20 11A -

Y T SCH R L ¥ R TG FI , R I
WHE 3N TARSS R 1 AR, Sl
5, e FRAE SR IO 25 15 8 Sk 2 2 fe e, FH DA HOR
LT far () (AR A5 B o XF T T2 AT 55 35 i b A
B, T H 0 ar RV B g TN RS B R S 2 )2,
1 2 B2 KN Ry 32 A2 T, T A faf T A5
HBZE R 12, = KN R 64 P2 00; T
Dropout J2 14 2% 1% 2Rk 0.1, DLk #1145 €
Sigmoid 1E M #4115 PR #L . BiGRU W 4% Fll PLE W 4%
(R SR B A N 2e 3. 3% 4 s .

%3 BIGRU M&ESH#iLE
Table 3 Parameter setting of BiGRU network

BiGRUM £ # 251 e
B2 24 2
o2 M 2 e AN B 32
FSLES 0.2

4.4 FMEERXTEE 5 4R

S EAIEFE T MIC A9 BiGRU-PLE 1 15 1) fi) v
BPE, B S b TSR 5 55 A 4 A TS AL EA TR
WO T 4 20 REASE AL 43532 LSTM A8 | BiGRU-
MTL £ % | BiGRU-PLE #£ % ) } Pearson-BiGRU-
PLE 71, [ 3 41X BB RN 280k R 5 RRAIE i 32
55 4 41 % B A 28 55 Pearson FH M R BUTH B R %



2 HEHEAR 116

# 4 PLENMESHIZE 19 000 -
Table 4 Parameter setting of PLE network 18 000 -
PLE 45 B 251 ¥l = 17000
R IR 4L 2 & 16000t
# 15000}
FSGES 0.1
14 000 |
ek 0.001 . . . . . ,
et i 0 20 40 60 80 100
bk i 2% Adam W R
H Frds 2 R AL Huber Loss — SZffi — LSTM — BiGRU-MTL — BiGRU-PLE
B 6 v 2 150 —— Pearson-BiGRU-PLE — MIC-BiGRU-PLE
HEREA R 128 15 & ZBE T {EH B S far il gh 4%
Fig.15 Electric load forecast curves of
AR, SR B R 2R A 2 g LR T AR H R LAY typical winter weekday
JEUARAE R B 5, %45 TR K 24 h (0% 17000l
FUTIOIN, SRAE [B] BN 15 min, 2k 96 DTN . B s . 16 500 -
. \ . ~ 16 000
FRAE L ¥ . B A TN 25 R PR P A é 15500 F
440 RORTEIMRRA T 3 14500
TEE ZE i S far W op, 2 H 2018 4F 8 A 1 H A 14000 | §
SR TR F, 2018 4F 8 J1 4 F g SRR 7R 4 2 ] I A
0 20 40 60 80 100
B, B0 A T P, BEHR 2018 4F 12 A 1 H S JE K, H 4 S
2018 4F 12 A 3 HoMHLAI TAE H o H B foy 0000 25 SR —— 52fF{ — LSTM — BiGRU-MTL — BiGRU-PLE

—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE

16 &ZHRE R S el g 2k

HIEH s FR & 13— 16 F136 5 FiRs.

19 000 Fig.16 Electric load forecast curves of
18 000 typical winter weekend
=4 L U, —
2 17 000 Fx 5 HHAFFNENIER
) ' able valuation indexes of electrical load forecastin
EWOOO Table 5 Evaluation ind f electrical load f ting
15000
14000 F \ TR LAY MAPE/%  RMSE/KW  MAE/KW
13 000 Lt~ . . . . ) LSTM 8.943 903.843 804.843
0 20 40 60 80 100 )
F A B BiGRU-MTL 7.462 861.347 717.843
— SzfEfE — LSTM — BiGRU-MTL — BiGRU-PLE BiGRU-PLE 7.164 749.247 657.757
—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE Pearson-BiGRU-PLE 6331 696.752 603.397
13 EZHEITER B AT ML MIC-BiGRU-PLE 5.864 619.934 529.164
Fig.13 Electric load forecast curves of
typical summer weekday PR O 1G5 A5 28 Ty T, MY T4 A

RS P S ey T SR R R, A H R R ST A5 R

| Fe, DRI 23 FOP (013 LR BRI 5000
Z tooooy HORHE . MBI R T LA 5], 5 LSTM
g 1000 BT 95 25 ST BURLAT He, MITL B B 2 48 )
14000} FHF % 3 fig 77 938, BIGRU-MTL RS A% T LSTM
13000, . . . . . FERI MAPE F&fi% T 16.56%; 1iij BiGRU-PLE #5 £ [,
v m%oww}% oo BiGRU-MTL #%  MAPE T [ T 3.99%, 15 B i i
R pLaORUPLE PLE R AF $2 3 09 46 7T LA B 47 4 745 21 6765 ] (488 45
14 E N o R T T FEAIE, :‘ii)”b SAF{E B35, Pearson-BiGRU-PLE £
Fig.14 Electric load forecast curves of T H 8T BiGRU-PLE 5 B MAPE &1 T 11.63%;
typical summer weekend SCH T AR ok MIC A S 43 B O o B AR

E HL A7 ey PO il £ v ] AR 3, 2R ) T R X LRREAE M B A Sy A, A1 % T Pearson-BiGRU-PLE
FHL 71y 75 2R A S M AN S, I ELJR R FH e TR H i) MAPE (&M% T 7.38%. £ I, SCH TSR AU 4R



117 #tasE 45, 2T BIGRU-PLE HY 4 $A 67 1oy 4 401166 4 Fitm)

A At Xk REASE AR A F, 7 ey S0 M A 2R T TR —
FERRBEET
442 V5 g BN AR BT

TEE Z= T far W rh, 2EHY 2018 4E 8 H 1 HoW
WA T /EH, 2018 4F 8 J1 4 H LI JE oK ; R4 2
Y far U, BEHL 2018 4F 12 A 1 H A HLAIE K,
2018 4F 12 H 3 H AMLAI TAEH . ¥ 6 iy Fi 2%
FPEMNFEFR AN 17— 20 FI5E 6 FiR .

45000

2
&30 000
’<'\b:

25000 -

20 000 i 1 1 1 1 1 J
0 20 40 60 8 100
P RO A
—— 52fR{E — LSTM — BiGRU-MTL — BiGRU-PLE
—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE

B 17 BEFARTIERL REHN ML
Fig.17 Cooling load forecast curves of
typical summer weekday

40 000 |
= 35000 |
=4
2 I
i 30000
4\}:
25000
20000 F . . . . .
0 20 40 60 80 100
V57 fuf B
— 92ff{f — LSTM — BiGRU-MTL — BiGRU-PLE

—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE

18 EZFHRIFRIQ G Fuill ih 2%

Fig.18 Cooling load forecast curves of
typical summer weekend

18 000

16 000

E 14 000

E

& 12000
<>

“T 10000

8000 Ak

0 20 40 60 80 100
& Btmr B
— SZpME LSTM — BiGRU-MTL — BiGRU-PLE
—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE

B 19 %R TIEH X ARHN Lk
Fig.19 Cooling load forecast curves of
typical winter weekday

eV S AT T 28 mT LU 31, 270 G SRR R

v DU R R B AR K, B2 il T, W T 5
Rm R F T, LB WL N FE, 1% 0 R Lk

18 000 |
16 000

Z 14000}

iE

& 12000 F

% 10 000 [

8000 -

0 20 40 60 80 100
A
— 52PRffi — LSTM — BiGRU-MTL — BiGRU-PLE
—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE
20 ZZFARIFRC AR L%
Fig.20 Cooling load forecast curves of
typical winter weekend
* 6 R RABMITNIER
Table 6 Evaluation indexes of cooling load forecasting

T AR IR MAPE/%  RMSEKW  MAE/KW
LSTM 10.764 2 753.394 2 056.986
BiGRU-MTL 8.724 1862.422 1386.739
BiGRU-PLE 7.424 1 535.281 1237.711
Pearson-BiGRU-PLE 6.358 985.360 728.471
MIC-BiGRU-PLE 5.935 924.517 654.179

ZRRAR; ¥& B far 76 ) R AT AR H (9 /K- AR
Mo FERIALTIN Jy 1, 52 A H A% SR e P
i TARMANH, T EER A HERK, K
VR T 2 TR0 B, ) A 2 o R U fh Ry
P, BRI SRS RO BT . AT 1000 2 8 4
ATLLEH, 5 LSTM AT 55 24 2 AU A L, BiGRU-
MTL #% 54 ) MAPE F#{X T 18.95%; BiGRU-PLE #%
%I [ BIGRU-MTL % MAPE F&{% T 14.90%, W]
ST A B 2 AT 5515 B AL AL v A AR IES
i) 22 J0 67 1ol A 15 B 5 BiGRU-PLE #5 5U A] L1,
Pearson-BiGRU-PLE £ %4 () MAPE F#{I% T 14.36%,
Ui B A BB G R IR O 0 T i v T o A o SO
TR B S G R AIE &7 MIC i %%, A5 T Pearson A
KM Hr i) BiGRU-PLE #: %1 MAPE F#fiK T 6.65%,
TIE B S v Jifr B AR AR A V2 71 ey TN I 3 TR A A
KigFt
4.4.3 A7 TN AR BT

105 2= T, EHR 2018 4E 8 H 1 H A
WA TAEH, 2018 4F 8 A 4 H MR R 7E4 &
PA T TR A, BEE 2018 4F 12 H 1 H y #L AR K,
2018 4F 12 A 3 HoAMLAI TAE H . $RG fmy 7 2%
FPEMHEbRAN A 21—&] 24 FIZE 7 B .

TE AR far TN £ o] DU B, 22795 00 5 X
AR o7 i SR A S A (Rl FEAR K, B 2R b 07 fap 75 oK 3
I, A tr for e oR A AR K4 s, A A 70 R



2 HEHEAR 118

0 20 40 60 80 100
AT B
— 52pr{H — LSTM — BiGRU-MTL — BiGRU-PLE
—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE
E 21 FFHET(ERRAETHNMHE
Fig.21 Heat load forecast curves of
typical summer weekday

14500}
14000 F

/kW

13500

I

{13000

“12500

B fuf

i

12 000 i 1 1 1 1 _ 1 J

0 20 40 60 80 100
AR

— 52f5fH — LSTM — BiGRU-MTL — BiGRU-PLE

— Pearson-BiGRU-PLE — MIC-BiGRU-PLE

B 22 EZFEIERAAETH %
Fig.22 Heat load forecast curves of
typical summer weekend

45000
40000
Z 35000 .
g 30000 [ Y
25000 F
20000 F

0 20 40 60 80 100
A L R
— 5ZfpE — LSTM — BiGRU-MTL — BiGRU-PLE
—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE
B 23 ZFHABTIERRGEHNMHE
Fig.23 Heat load forecast curves of
typical winter weekday

40 000 [

35000 -

/kW

ki

30000 -

Hy

25000F

0 20 40 60 80 100
AT s
— 92BR{E — LSTM — BiGRU-MTL — BiGRU-PLE
—— Pearson-BiGRU-PLE — MIC-BiGRU-PLE

B 24 ZZHMAFRAGAEH L
Fig.24 Heat load forecast curves of
typical winter weekend

R7 RAAEBITENIER
Table 7 Evaluation indexes of heat load forecasting

T AR IR MAPE/%  RMSEKW  MAE/KW
LSTM 9.975 2745.342 2284.737
BiGRU-MTL 7.885 2 429.394 1939.046
BiGRU-PLE 6.474 2178.737 1661.754
Pearson-BiGRU-PLE 6.159 1981.573 1 569.924
MIC-BiGRU-PLE 6.031 1942.741 1536.847

ForE TAE Hmg A TR ZERSRITIN i, SCrb firdg
R E A T E B R T T B TH /D, M
BiGRU-PLE % MAPE TS U HE T 6.84%, 1%
SR E X RN EARKRER . WHF
T ST T2 b F BIHE VRS A, B A TR T, —
AR A B TR ER AL T 5 2, R T oK W R T
FL 671 g R B A, T R 2 ) B 67 A T T M 7
R AR 5 , 97407 i 4 AR /NS AR B 2 (H
AERRAE, SHL B U AN R, 3T
[ S B[] P 0 5040 %o = A A A S0 K 1) i T A
XA

5 %Hig

BFXT TES FAAE R 22K 1 Re IR AC B A P A, 3
R —Fh LT MIC #HCH: 5347179 BiGRU-PLE £
JCGfar FNASEAY . Z AR ALE R MIC BRE T v £5 2]
AH S B I SR FREAE A AL S A, F1H BiGRU
W) 28 X Z2 56 071 iy R 1] ) 51) 42 A ) AR i 5 2 44 s
78, B iS4 A A PLE W48 85 4, J4724 2
Z ot b 2 (8] RS HRE S B, i 2 2R IE$EE
W28 3 AEE S5 A SN A1 55 B A, 15
2| Z2 0 40 far N 25 5, Bk G T TUAR A BN N o
H T, AT 55 1 22 70 0 ff SO0 %) ME R o
BT RT AAR DL S5 98

(1) i, ¥ RO 5 I ZRHE L I 1E] H 3
FRAE 22 8] ELAG AR 5 1 A S, 52 e i 2 45 AN AH TR
281k MIC R 1 358 5 o AH DG M 3¢ w1 R AP Ik i A
BEAY, TR B T LA ) — o T, UERB T ST
MIC A 53 BT B i A RRAE S B A 35k

(2) 7E 3 Pt far 9 0000 285 S v, HL 72 g 78 B ]
Ae R b BT 0 2 0 R R, A2 A0SR R R i R
N, BTN B de v o TV L IR 67 5 52 S ER B
PR 2R 1) 52 ], 5080 o 2 25 77 A B R 28 722 g 51,
PR LSS Y D] 252 >0 S0 R G e 7 oy, 5 ST A
A TR

(3) SCH 4 9 MIC-BiGRU-PLE 4 4545 %1 15
NS B A G B 25, IE A PLE 2% 25 46 RE A% 7543 >



119 #rthzE 4. BT BiGRU-PLE it B, ¥4 AWt i e S B56 45 T

*

e Z et Z MRG58, AREC T 1L e B
(ST U SIIRERTE Z
SCHRAETS [& TES 22 Ju i faf A 820 [ R I, IR

W R i 5D B P85 52 0 S EUAY B 1y 872, Gk,

B VRS A OIS0 FH -t 2 52 i 67 i 22 1 ) o 2 )

R, AESR VTR TAE T 20R L AR T A

SE k-

(17 5Kk, ESHH, FR L, 4. X0k B MRS BEIR R G M

W EEHAR RARLI]. oy R 58 A Bk, 2022, 46(8): 189-
207.
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al.
Key technologies and challenges of low-carbon integrated
energy system planning for carbon emission peak and carbon
neutrality[J]. Automation of Electric Power Systems, 2022,
46(8): 189-207.

(2] ARG, I, B R, 4. Z8 R R SRR 5211t

FERVFLI]. B EH A, 2024, 50(3): 1053-1066.

SONG Xiaotong, SHI Qianqgian, JU Yuntao, et al. Review on

low-carbon planning and operation of integrated energy

system [J]. High Voltage Engineering, 2024, 50(3): 1053-1066.

AR, NG, S0, 55 T AT S TR ZE G B

AGAATHEE [J]. B, 2024, 41(1): 90-99.

YANG lJialin, ZHAO Pengxiang, DOU Zhenlan, et al. Optimal

scheduling of integrated energy systems considering economy

and reliability[J]. Distribution & Utilization, 2024, 41(1): 90-

99.

(4] 202, 222, BUAH, 55, T S S REL R 1R TR & 75 R 15z (Y

LR REIR R g ) R R ARBRAUAL L], T, 2024, 41(2):

52-63,72.

GUO Zun, AN Zhi, WEI Nan, et al. Multi-time scale low-carbon

[

(3

optimization of an integrated energy system considering the
multi-link utilization of hydrogen energy and mixed demand
response [J]. Distribution & Utilization, 2024, 41(2): 52-63,72.
HhETEE, EOME, YL 45 LT AN TR RERORAYBTEL 1 R 5T
T BN 52 23R (0] v [ B ML T AR 2 4R, 2023, 43(22):
8569-8592.
HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artifi-
cial intelligence based load forecasting research for the new-type
power system[J]. Proceedings of the CSEE, 2023, 43(22):
8569-8592.
(6] B&ifpte, RAFUR, BEDLIT, . LB REIR RSB SRR 1],
R A, 2021, 45(6): 2256-2272.
LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. Review on opti-

[l

(5

mal scheduling of integrated energy systems[J]. Power System
Technology, 2021, 45(6): 2256-2272.

(7] sl i, SR, 45, L TIR LS 24T 55 24 > il IX Y25
A REUR R S8 2 o0 S U (7). AL RIHE R, 2018, 42(3): 698-
707.

SHI Jiaqi, TAN Tao, GUO Jing, et al. Multi-task learning based
on deep architecture for various types of load forecasting in

regional energy system integration[J]. Power System Technol-

(8]

[

9

[10]

[11]

[12]

[13]

[14]

[15]

ogy, 2018, 42(3): 698-707.
B3, F/NE, T4, . BB TRSE L ME G RIR R
g [l Ak 2= 2 LAk BE DL ) R AR S, 2024,
52(2):1-14.
LU Jinling, WANG Xiaojun, DOU Jiaming, et al. Optimal
dispatch of an integrated energy system based on graph rein-
forcement learning considering operation state information[J].
Power System Protection and Control, 2024, 52(2): 1-14.
226, BV, TS, 55, 3L T Spearman AHOGPEBI(E S8 A
VMD-LSTM (14 ] 4 456 Re 5 22 e 4 300 40 e T (7). 4
ERAEIRTLIE I, 2024, 7(4): 406-420.
LI Peng, LUO Xiangchun, MENG Qingwei, et al. Ultra short-
term load forecasting of user level integrated energy system
based on Spearman threshold optimization and variational mode
decomposition and long short-term memory[J]. Journal of
Global Energy Interconnection, 2024, 7(4): 406-420.
B2k B FETF IFOA-GRNN A48 1 H 7 677 15000 5 36 00T 5%
(1. T R GEARY S5, 2020, 48(9): 121-127.
ZHU Xuechang. Research on short-term power load forecast-
ing method based on IFOA-GRNN[J]. Power System Protec-
tion and Control, 2020, 48(9): 121-127.
WK, THIL, BZE. 35T GRA-SA-BP #2851
T2 Ve SRR AL ()] R, 2020(24): 113-116.
HUANG Xinle, YU Junqi, ZHAO Anjun. Cold load prediction
model of shopping mall air conditioning based on GRA-SA-BP
neural network algorithm[J]. Construction Science and Tech-
nology, 2020(24): 113-116.
AR, 22, A F. 5T PSO-LSSVM MR G 7 LM A 5%
(J]. HSAAIRE, 2021, 49(6): 46-49, 78.
ZHAO Bingwen, LI Wan, JIN Yu. Heating load prediction
based on PSO-LSSVMU[J]. Building Energy Efficiency, 2021,
49(6): 46-49,78.
FFF, BE, SR, SFL T )T CRE R BT £ fE
AIELAER ], I RS A Bk, 2023, 47(24): 52-62.
WANG Dan, LI Yizhe, JIA Hongjie, et al. Multi-energy
coupled flow hub modeling for generalized energy quality anal-
ysis[J]. Automation of Electric Power Systems, 2023, 47(24):
52-62.
EWEE, R R TR T INZ Z 9 GRU B & M 45 145
HRER R G L2 ou L T (1], o ) RG-S 53],
2022,50(23): 85-93.
WANG Songyao, ZHANG Zhisheng. Short-term multivariate
load forecasting of an integrated energy system based on a
quantum weighted multi-hierarchy gated recurrent unit neural
network[J]. Power System Protection and Control, 2022,
50(23): 85-93.
TRIEAL, 290, 7 . SE TS MK RBMZE B RE IR R SR LT
TR BN [J]. K HLEAR, 2025, 46(1): 9-18.
TU Weiquan, LI Hui, WAN Zheng. Research on short-term
forecasting of multiple loads in integrated energy systems
based on composite correlation coefficients[J]. Power Genera-

tion Technology, 2025, 46(1): 9-18.



A LBRA

120

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

EH, Z2H, BAR, 2. —RRIHUR BE T i) 2T s i e ) S A
AWM Ty (], ) RGO 545, 2024, 52(13): 47-
58.

LI Nan, JIANG Tao, SUI Xiang, et al. A multi-component
short-term power load combination forecasting method on a
time-frequency scale[J]. Power System Protection and Con-
trol, 2024, 52(13): 47-58.

S, REME, VP, 5. LT 28 S A (R F A R 1]
R BRBIOPT 22 I 225 B4 25545 R TR 2R 40 1 v AR L 400 A T
(1], IR, 2024, 48(1): 121-133.

DOU Zhenlan, ZHANG Chunyan, XU Yizhou, et al. Ultra-
short-term load forecasting of electrical, cooling and heating
for integrated energy system based on multivariate phase space
reconstruction and radial basis function neural network[J].
Power System Technology, 2024, 48(1): 121-133.

P, K TR AA S I S A NG A REIR RS
Fger B D). ) R EE A 31k, 2024, 48(10): 151-160.
HUANG Huang, ZHANG An'an. Load forecasting of inte-
grated energy system based on combination of decomposition
algorithms and meta-learning[J]. Automation of Electric
Power Systems, 2024, 48(10): 151-160.

WANG S M, WANG S X, CHEN H W, et al. Multi-energy
load forecasting for regional integrated energy systems consid-
ering temporal dynamic and coupling characteristics[J].
Energy, 2020, 195: 116964.

WA TE, AXBH, L, 55, 3£F VMD-CNN-BIGRU M, /1 &
Geas e (0], R 7, 2022, 55(10): 71-76.

YANG Huping, YU Yang, WANG Chao, et al. Short-term load
forecasting of power system based on VMD-CNN-BIGRU[J].
Electric Power, 2022, 55(10): 71-76.

SAR, IMIRL, T AL, A IR Rem AL G I P R LE A eI
ZR 90 8 30 o e T vk (0], R, 2020, 44(11):
4121-4134.

LI Ran, SUN Fan, DING Xing, et al. Ultra short-term load
forecasting for user-level integrated energy system considering
multi-energy spatio-temporal coupling[J]. Power System
Technology, 2020, 44(11): 4121-4134.

LI K, MU Y C, YANG F, et al. A novel short-term multi-
energy load forecasting method for integrated energy system
based on feature separation-fusion technology and improved
CNNU[J]. Applied Energy, 2023, 351: 121823.

GUOY X, L1Y, QIAO X B, et al. BILSTM multitask learning-
based combined load forecasting considering the loads
coupling relationship for multienergy system[J]. IEEE Trans-
actions on Smart Grid, 2022, 13(5): 3481-3492.

ORI, XUPEGR, #SR, 4. £ T CEEMDAN-CSO-LSTM-
MTL %54 BEIR 2 58 £ o0 s B (7). #2132, 2025,
46(1): 72-85.

WANG Yongli, LIU Zeqgiang, DONG Huanran, et al. Multi-

variate load forecasting of integrated energy system based on

[25]

[26]

[27]

(28]

[29]

[30]

CEEMDAN-CSO-LSTM-MTL[J]. Electric Power Construc-
tion, 2025, 46(1): 72-85.

R, TEITA. BT K5 B REFZ BT Stacking 4 i
FJ MG A REIR R G Lo i B 1), W0y B Sk,
2022, 42(5): 32-39, 81.

CUI Shuyin, WANG Xinjie. Multivariate load forecasting in
integrated energy system based on maximal information coeffi-
cient and multi-objective Stacking ensemble learning [J]. Elec-
tric Power Automation Equipment, 2022, 42(5): 32-39,81.
TR, B, S, 5 B BRI S 2R ARG
TC F, 00 67 39 6 g R0 (D). v O R B S R, 2024,
52(6): 131-141.

YU Yue, GE Leijiao, JIN Zhaoyang, et al. Short-term load
prediction method of distribution networks considering weather
and multivariate correlations[J].
Protection and Control, 2024, 52(6): 131-141.
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al.

Learning phrase representations using RNN encoder-decoder

features Power System

for statistical machine translation[C]//Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar. Stroudsburg, PA, USA:
ACL, 2014: 1724-1734.

TANG H Y, LIU J N, ZHAO M, et al. Progressive layered
extraction (PLE): a novel multi-task learning (MTL) model for
personalized recommendations [C]//Fourteenth ACM Confer-
ence on Recommender Systems. Virtual Event Brazil. ACM,
2020: 269-278.

ZENR, B, IRE, . JET 2R 5 S MR 55 2 ST A
R 2545 BE IR R 48 £ ou A OO (0D, fR R, 2024,
48(4): 1510-1522.

QIN Shuo, ZHAO lJian, XU Jian, et al. Multivariate-load fore-
casting of integrated energy system based on combined multi-
task learning and single-task learning model[J]. Power System
Technology, 2024, 48(4): 1510-1522.

INREL, BN, 5K K, 46, BT LSTM FIZAT 552 T Y45
GReB ARG 2 oC fom B0, o R4 A 3hfk, 2021,
45(5): 63-70.

SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple
load prediction of integrated energy system based on long
short-term memory and multi-task learning[J]. Automation of
Electric Power Systems, 2021, 45(5): 63-70.

TEH AT

1A 5E(1999), 5, B FE L, BFFE 7 10 R
LA REIR R G ST U (E-mail: xyh19990403@
163.com);

MER(1982), B, Wi, =g TR, By
[ Ay P A3 5 PR W 5 R B2 T

fili 4R (1998), 5, W+, BF5E 5 16 A L )
R A Hi

(F#% 149 W)


https://doi.org/10.1016/j.energy.2020.116964
https://doi.org/10.1016/j.apenergy.2023.121823
https://doi.org/10.1109/TSG.2022.3173964
https://doi.org/10.1109/TSG.2022.3173964
https://doi.org/10.1109/TSG.2022.3173964
mailto:xyh19990403@163.com
mailto:xyh19990403@163.com

149 KB S5 JET A RE RN I BELJE 22 i) KUK i B GEUK 1AL IRAm ] 7

Mitigating subsynchronous resonance using supplementary damping control of battery
energy storage in a wind-thermal-storage bundling system

HU Yonggiang', WANG Xi*, WU Linlin’, XIE Xiaorong’, BU Haitang', SU Tianyu’
(1. Beifang Duolun Renewable Energy Co., Ltd., Xilingol League 027200, China; 2. Tsinghua University (State Key
Laboratory of Power System Operation and Control), Beijing 100084, China; 3. North China Electric Power
Research Institute Co., Ltd., Beijing 100045, China)

Abstract: Subsynchronous resonance (SSR) caused by the interaction between thermal power generators and series-capacitor-
compensated AC lines, has been a significant concern in China's power grids. An energy storage supplementary damping
control (SDC) to suppress SSR is proposed in this paper. SDC enables local feedback, and utilizes the coupling between
generators and power grid to enhance the overall damping level. Firstly, the target system is modelled and the mechanism and
characteristics of its SSR problem are clarified through frequency and time-domain analyses. Then, the supplementary damping
control strategy is established based on battery energy storage system (BESS). Its control parameters and adding positions are
optimized, and the impact of SDC's control capacity on BESS's normal functions is analyzed. Finally, the effectiveness and
feasibility of the proposed SDC are verified through electromagnetic transient simulations with a real-world project, i.e., the
Shangdu wind-thermal-energy storage bundling system. The simulation results also show that the proposed SDC can effectively
address the SSR issue with reduced control cost and equipment investment cost, serving as a more economical solution.
Keywords: subsynchronous resonance (SSR); supplementary damping control (SDC); resonance mitigation; battery energy

storage system (BESS); wind-thermal-storage bundling system; series compensation
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BiGRU-PLE based short-term joint forecasting of electric, cooling and heat loads

XU Yihao, MEI Fei, LU Jiahua
(School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

Abstract: Accurate forecasting of electric, cooling and heating loads is an important prerequisite and foundation for the
operation scheduling and energy management of integrated energy systems. Leveraging the energy coupling characteristics
between multivariate load, this paper constructs a joint prediction model for multivariate load based on bidirectional gated
recurrent units (BiGRU) and a progressive layered extraction (PLE) network architecture. Firstly, the meteorological features
with high correlation are screened as input features of the model through the maximum information coefficient. Then, the
BiGRU network is used to extract the temporal features of the multivariate load time series under the integrated energy system
and reconstruct the data in this way. Secondly, for the characteristics of different energy sources that are coupled with each
other, the improved progressive hierarchical extraction network structure is proposed, and the coupling features are extracted
from the complex and multidimensional data through the multilevel sharing of the feature extraction layer. Finally, by changing
the structural parameters of the sub-task tower module, the coupled feature information is differentially fused, and the multiple
load prediction results are obtained. The actual example results show that the maximum information coefficient screening
method adopted in the article is more suitable for feature selection of meteorological data than the traditional Pearson
coefficient screening method, and the proposed BiGRU-PLE multivariate load prediction model can reduce the prediction error
by more than 5% compared with the single-task model, and by more than 3% compared with the common multitask model.

Keywords: bidirectional gated recurrent unit (BiGRU); maximum information coefficient; coupled feature extraction;

multivariate load forecasting; integrated energy system; multitask learning
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