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Fig.1  Simulation model of grounding grid
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F1 IHEREATEMSENBRERFAMER
(p=50Q-m, FAZ1)
Table 1 The voltage rises and currents of grounding

conductors under power frequency current
(p =50 Q-m, injection point 1)

x4 ITHRAREATEMSENRERFAMBR
(p=500Q-m, FAK2)

Table 4 The voltage rises and currents of grounding
conductors under power frequency current
(p =500 Q-m, injection point 2)

L RRR LRI TV fliez5 e SR ENCHITER VLN

WE oy ma M M BA EA
ML B BN B BHe

1 2364 2355 2354 2409 5014 5883
3 2358 2345 2343 2409 2020 1979
5 2308 2302 2300 2409 2020 1979
7 2302 2297 2296 2409 1156 686

AR 2372 2364 2362 10000 10000 10000

BWSKIRERIIN A SRR TA
L - T . NC T S
S R 3 RS

o Ee B
1 22951 22947 22942 898 244 79
3 22953 22947 22942 898 716 678

5 22970 22962 22956 898 716 678
7 22972 22967 22961 898 2 654 3408

EAM 22977 22973 22968 10000 10000 10 000

®2 IHERERATEMSENBERFAMER
(p=500Q-m, FEAZ1)
Table 2 The voltage rises and currents of grounding

conductors under power frequency current
(p =500 Q-m, injection point 1)

e RRR LRIV WA TR B /A

WA e e MR B EA
B R B B B B

1 23009 22998 22993 2415 5019 5877

3 23003 22990 22984 2415 2026 1985

5 22956 22949 22943 2415 2026 1985

7 22950 22945 22940 2415 1159 689
HEAR 23017 23007 23002 10000 10000 10 000

x3 IHAERERTEMSENBERFAMER
(p=50Q-m, FANR2)

Table 3 The voltage rises and currents of grounding
conductors under power frequency current
(0 =50 Q-m, injection point 2)

b R RR L IR TV T SR LA

Wat g wE &m0 ME WA EM
Pl B P B ML HEM

1 2300 2297 2296 898 244 79
2302 2297 2296 898 715 677
2319 2312 2310 898 715 677
2323 2317 2315 898 2653 3407

AR 2326 2323 2322 10000 10000 10000
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Fig.2 Voltage difference of the grounding grid for
different soil resistivities and different current
injection points under power frequency current
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Fig.5 The voltage and current of grounding conductors
under lightning impulse

*k5 EHEEREATEMSENBERAFER
(p=50Q-m, FAR1)
Table 5 The voltage rises and currents of grounding
conductors under lightning current (o = 50 Q-m,
injection point 1)

PHSRERIERTIV R SRR RUA
Wl s B ZA A WA 2
P B ML s B B

1 28423 24775 23506 2536 4584 5088
3 23701 11446 11033 2536 2274 2292
5 11091 2081 2071 2536 2274 2292
7 2580 1 862 1857 2537 1304 698

TEAK 35532 33037 32252 10000 10000 10 000

M 5—3 8 ih s nl LI Y, SiEA T
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* 6 ELTREREATEMSENBRERFAMER
(p=500Q-m, FAZ1)
Table 6 The voltage rises and currents of grounding

conductors under lightning current (o = 500 Q-m,
injection point 1)

e RRR LRI TV TR TR /A

Wl g B ZA A WA 2R
P B B B B

1 115647 99121 97313 2737 4883 5381
3 116 067 72088 71 039 2735 2 449 2467
5 53465 24911 24882 2735 2449 2 467
7 24452 22751 22701 2739 1427 786

WA 125108 111262 110194 10000 10000 10 000

x7 BEEEREATEMSEHBERAMER
(p=50Q-m, EFANH2)
Table 7 The voltage rises and currents of grounding

conductors under lightning current (o = 50 Q-m,
injection point 2)

e RRR LRI TV T SRR LA

Wel g B ZA A WA 28
B BSb B B P B

1 2201 1845 1841 978 297 65

3 8358 1904 1898 971 856 829
5 16589 7705 7330 971 856 829
7 17410 15590 15045 978 2577 3180

HAR 23060 21991 21699 10000 10000 10 000

*8 ETFHREATEMSEMNBEEBRANER
(p=500Q-m, EA&2)

Table 8 The voltage rises and currents of grounding
conductors under lightning current (o = 500 Q-m,
injection point 2)

£ R EN ULV PR VAY T SRR LA

WA s WA ZM M W 2R
b B B B B B

1 23355 22563 22524 1124 317 75
3 38093 22635 22644 1039 905 878
5 70126 40592 39719 1041 905 878

7 62940 52873 52240 1062 2662 3263

AL 64193 61784 60614 10000 10000 10000
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Fig.6 Voltage difference of the grounding grid for

different soil resistivities and different current injection
points under lightning current
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Fig.7 The voltage and current of grounding conductors
under high-frequency damped oscillation current

*9 SHEEBRZEREATEGRSENEERFAIE

F(p=50Qm, FANS1)
Table 9 The voltage rises and currents of grounding
conductors under high-frequency damped oscillating
current (o = 50 Q-m, injection point 1)

F10 SHEERIRZBERIERATEMSENBEERFAFE
M(=500Q-m, FAE1)

Table 10 The voltage rises and currents of grounding
conductors under high-frequency damped oscillating
current (o = 500 Q-m, injection point 1)

PSR IRIATHV RS SRR LA
WA s W &4 A FA 2
P B BB B B 3
1 357380 422421 384219 3388 2 644 2263

3 358428 198962 123228 1020 581 323
5 131954 36275 19024 772 439 327
7 62895 19086 10658 1172 279 59

TEAM 476759 483441 495329 10000 10000 10 000

x 11 SHERKHERIERTELSENEERFAFE
(p=50Q-m, FANZ2)
Table 11 The voltage rises and currents of grounding

conductors under high-frequency damped oscillating
current (o = 50 Q-m, injection point 2)

A RRR LRI TV T TR LA

Wat g WM &m0 MM TE £M
P BEML dEMb BEML M B

1 73593 87402 77092 863 832 805

3 73104 28099 9732 254 137 40

5 33757 4392 1883 240 128 53

7 10 258 1265 681 365 49 11
TEARL 207819 208447 211475 10000 10000 10 000

XF L 9—3¢ 12 i SR n A, FLRLA 55 R A e
TR . (E AR IR,
iy 5 A v e SRR D T i b S AR S B e B
PR, 5300 9 57 43 A T IR 3495,

T 1R ARBEL e B 35 L A T, 3 o7 ) 4
SRR TH R AE R A ECE TR . R HE IR
FEL 3L DT 42 1 S i) ) oL S 22 T (G €] 8 JITms

HeHh PARA LRI TV T 2 H L S AR B L /A

Wl g FA ZA A WA 2
P B B B B B

1 4683 857 633 219 25 14
3 21262 3467 1729 134 86 47
5 50880 19409 7795 151 85 31
7 56499 58792 55045 957 817 757

HEAM 153296 153892 155319 10000 10 000 10 000
F 12 BEMEERKRZERIERATEMSEEBEERFAFE
#(p=500Q-m, EFANHE2)

Table 12 The voltage rises and currents of grounding
conductors under high-frequency damped oscillating
current (o = 500 Q-m, injection point 2)

HeHh PARR LRI TV T S AR LA

WA s W ZM M W 28
PeHL ML ML B B B

1 41446 12991 10194 686 173 38
91538 27041 15731 500 309 226
257084 145995 91153 688 354 199

3
5
7 232355 260137 239917 2101 1628 1545
ARL 300582 305848 308917 10000 10000 10000
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PO 18 1] 1 79 S F) L 1 22 R 228 4 b 5 S 4 R
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The impact of substation secondary equipotential grounding grid connection

methods on grounding grid characteristics

CAO Zhiwei', JIA Wenda’, WANG Jihao', YAN Qing', HUANG Jinjun®’, GUO Jun’
(1. State Grid Shandong Electric Power Research Institute, Jinan 250003, China; 2. School of Electrical Engineering, Xi'an
Jiaotong University, Xi'an 710049, China; 3. DC Technical Center of State Grid Corporation of China, Beijing 100052, China)

Abstract: The impact of electromagnetic interference on secondary systems in substations can be reduced by the installation of

secondary equipotential grounding grid. A simplified grounding grid model based on CDEGS is established to study the effects

of the connection mode between the secondary equipotential grounding grid and the main grounding grid on ground potential

rise and current in the secondary equipotential grounding grid. By considering soil resistivity and current injection points, the

characteristics of the grounding grid under power frequency current, lightning current, and high-frequency damped oscillation

current are simulated and analyzed. It is found that when the injection current frequency is low, the ground potential difference

and current inside the secondary equipotential grounding grid close to the fault point can be effectively reduced by the single-

point grounding connection mode. When the injection current frequency is high, the multi-point grounding connection mode

can effectively reduce ground potential rise and current. Besides, the ground potential rise and current of grounding conductors

at different locations increase with increasing soil resistivity. When the current injection point is at the corner of the grounding

grid, the ground potential difference and current inside the secondary equipotential grounding grid is significantly increased.

Keywords: secondary equipotential grounding grid; current injection points; grounding grid potential rise; soil resistivity;

lightning current; high-frequency damped oscillation current
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