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摘　要：高压电缆缓冲层烧蚀缺陷是导致电力电缆故障的重要原因。缓冲层烧蚀会释放气体，释放气体的成分及浓

度能够表征缓冲层的烧蚀缺陷程度。傅里叶变换红外光谱技术应用于缓冲层烧蚀气体分析时具有快速、灵敏、无损

的独特优势。针对缓冲层烧蚀气体检测存在的噪声影响、基线漂移及交叉干扰问题，文中提出一种高压电缆缓冲层

烧蚀气体红外光谱分析方法，以 CH4、C2H6、C2H4 作为特征气体，分别通过标准浓度气体分析和烧蚀特征气体分析实

验对该方法进行验证。实验结果表明，3 种特征气体浓度与缓冲层烧蚀缺陷有关，所提方法可从红外光谱中精准分

析特征气体的浓度。混合气体中 CH4、C2H6、C2H4 的相对误差分别为 8.90%、17.60% 和 4.32%，检测周期小于 15 s。
文中方法为快速、高精度诊断高压电缆缓冲层烧蚀缺陷提供了关键技术支撑。

关键词：高压电缆；烧蚀；红外光谱；噪声；基线漂移；交叉干扰；特征气体

中图分类号：TM75 文献标志码：A 文章编号：2096-3203（2026）02-0093-08
  

0    引言

高压电缆在供电系统中具有重要地位，其可靠

性对于维护城市电网的安全稳定至关重要[1-2]，一旦

发生故障，可能引起大面积停电事故，严重危害人

民生命财产安全。近年来，由于缓冲层烧蚀所导致

的交联聚乙烯（cross-linked  polyethylene,  XLPE）电
缆故障事故频发，引起了行业内的广泛关注[3-12]。

评估高压电缆缓冲层状态，对烧蚀缺陷进行诊断，

有助于预警电缆事故，保障电力电缆安全运行。

目前高压电缆缓冲层烧蚀缺陷的检测方法主要

有高次谐波法[13]、超声检测法[14]、宽频阻抗法[15]、

局部放电法[16]、X射线成像技术[17-18]等，但这些方

法在重复性、安全性、识别率等方面有待提高。高

压电缆阻水缓冲层发生烧蚀时会产生气体，主要包

括 H2、CH4、C2H6、C2H4、C2H2、CO2 等。这些气体

与缓冲层烧蚀缺陷的劣化程度密切相关[19]，分析这

些气体浓度能够诊断缓冲层烧蚀缺陷。缓冲层烧

蚀的气体产物会随时间累积，因此这种方法不要求

检测时发生局部放电，适用于具有长期、间歇性、

低能量的局部放电特征的缓冲层烧蚀。

近年来，也有研究人员开展了基于特征气体诊

断高压电缆缓冲层烧蚀缺陷的研究。文献[19]采
用气相色谱分析缓冲层烧蚀的特征气体，表明烧蚀

过程中的电流密度与气体产物存在明显关联。文

献[20]提出一种基于 H2、CH4、C2H6、C2H4、C2H2 的

缓冲层状态评估方法。文献[21]将甲苯、邻苯二甲

酸二丁酯等芳香烃类气体作为特征，提出一种缓冲

层烧蚀缺陷分析方法。文献[22-23]通过在铝护套

波峰处钻孔取气，进一步验证了分析缓冲层烧蚀缺

陷释放气体的可行性。但目前这些成果均采用气

相色谱仪分析缓冲层烧蚀缺陷释放的特征气体，这

种方法的检测周期长、便携性差、操作复杂、维护

困难，难以实现对烧蚀缺陷释放的多组分气体的快

速检测。

电缆烧蚀特征气体的成分复杂，且目前关于缓

冲层烧蚀特征气体检测的研究较为缺乏。傅里叶

变换红外光谱（Fourier  transform  infrared  spectro-
scopy, FTIR）作为一种快速、灵敏、无损的检测技

术，在气体分析方面具有优势[24-26]，可用于缓冲层

烧蚀特征气体分析。然而，在实际分析中，受光谱

仪自身特性和外界环境因素等影响，原位光谱不可

避免地含有噪声[27-28]。这些噪声会影响分析结果，

淹没低浓度气体的光谱信息。由于光源、温度、湿

度、气流等因素，以及仪器自身特性漂移的影响，光

谱的基线可能发生倾斜与波动，进而导致光谱吸收

峰处的吸光度产生偏差[29-30]。同时，缓冲层烧蚀特

征气体为多组分混合气体，各组分的红外光谱存在

严重的交叉干扰[31-32]。因此，如何提高光谱信噪

比，消除各组分间的交叉干扰，准确地从光谱中提

取气体浓度信息仍是有待解决的重要难题。

针对以上问题，文中提出一种用于高压电缆缓

冲层烧蚀特征气体的 FTIR光谱分析方法。采用改
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进的 Savitzky-Golay（SG）平滑消除光谱中的噪声，

采用改进的自适应迭代重加权惩罚最小二乘

（adaptive iterative re-weighted penalized least squares,
airPLS）进行基线校正，采用竞争自适应重加权采样

（competitive  adaptive  re-weighted  sampling,  CARS）
筛选特征变量，采用偏最小二乘回归（partial least
squares regression, PLSR）建立烧蚀特征气体浓度的

定量分析模型。通过标准气体分析和模拟烧蚀气

体分析验证方法的有效性。结果表明，该方法能够

有效解决高压电缆缓冲层烧蚀缺陷特征气体红外

光谱分析所面临的噪声影响、基线漂移和交叉干扰

问题，提高烧蚀特征气体分析的准确性，为高压电

缆缓冲层烧蚀缺陷诊断提供数据支撑。 

1    缓冲层特征气体 FTIR 光谱分析方法
 

1.1    FTIR 光谱分析法

FTIR光谱分析的核心原理是朗伯比尔吸收定

律[33]。当特定频率的光垂直穿过固定厚度的均匀

介质时，透射光的强度与入射光满足式（1）。 

A(ν) = ln
I0(ν)
It(ν)

= ln
1

T (ν)
= K(ν)LC （1）

式中：A(ν)为频率 ν处的吸光度；I0(ν)为入射光频

率 ν处的强度 ； It(ν)为透射光频率 v处的强度 ；

T(ν)=It(ν)/I0(ν)，为透射比（透光度）；K(ν)为摩尔吸收

系数；L为介质厚度；C为气体浓度。

根据朗伯比尔定律，当 L不变时，A(ν)与 C之

间成正比关系。通过分析 A(ν)，可以得到不同气体

的浓度。光谱吸收峰的横坐标（频率/波数）反映了

气体的种类，光谱吸收峰的纵坐标（强度）反映了气

体的浓度，能够实现气体的定性、定量分析。

高压电缆缓冲层烧蚀会产生 H2、CH4、C2H6、

C2H4、C2H2、CO2 等气体[22,34]。H2 为对称型分子，在

红外波段无吸收；环境空气中的 CO2 浓度较高，容

易对测量产生干扰；缓冲层烧蚀所产生的 C2H2

浓度较低，不易被测定 [19,22,34]。因此 ，文中选择

CH4、C2H6、C2H4 作为缓冲层烧蚀的特征气体。由

HITRAN光谱数据库得到特征气体在 500 cm−1 至

4 000 cm−1 波数区域的吸收线，如图 1所示。这些

特征气体的吸收峰存在严重交叠，如在 3 000 cm−1

波数位置附近，3种特征气体均存在较强的吸收。

其中 C2H6 的主要吸收区域均存在 CH4 和 C2H4 的

干扰，难以有效准确分离。因此，采用数据校正技

术分离不同气体的光谱特征。

通过数据分析解决缓冲层烧蚀特征气体红外

吸收光谱的噪声影响、基线漂移和交叉干扰问题，

分析过程如图 2所示。采用标准浓度气体的红外

吸收光谱建立数据库，首先对测量得到的光谱进行

平滑去噪，消除高频噪声干扰；接着通过自适应基

线校正方法消除光谱的基线漂移；然后筛选特征变

量，降低数据量的同时消除各组分间的交叉干扰；

最后建立定量分析模型，得到缓冲层烧蚀特征气体

各组分的浓度。
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图 2   缓冲层烧蚀特征气体红外光谱分析过程
Fig.2    Infrared spectral analysis process of buffer layer

ablation characteristic gases
  

1.2    光谱预处理 

1.2.1    平滑去噪

采用改进的分段 SG平滑消除光谱中的高频噪

声，通过局部多项式拟合实现光谱平滑。在窗宽为

2w+1的窗口内，通过式（2）所示 n阶多项式对光谱

进行拟合。 

f j =

n∑
t=0

ht jt = h0+h1 j+h2 j2+ · · ·+hn jn （2）

式中：n为多项式拟合阶数；ht 为第 t个拟合系数；

j为窗口内的波数变量，j∈[−w, w]；fj 为窗口内在波

数 j处的多项式拟合值。在窗口内，共有 2w+1个

式（2），构成了 n+1元线性方程组。通过最小二乘

拟合确定拟合系数 ht，得到： 

H = eT
1

(
XTX

)−1XT （3）

eT
1

式中：X为设计矩阵，也是范德蒙矩阵，如式（4）所
示； 为单位基向量，如式（5）所示；H为通过最小
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图 1    高压电缆缓冲层烧蚀特征气体的红外光谱

Fig.1    Infrared spectra of characteristic gases from high-
voltage cable buffer layer ablation
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二乘拟合得到的平滑系数向量，如式（6）所示。 

X =


1 −w · · · (−w)n

1 −w+1 · · · (−w+1)n

...
...

...
1 w · · · wn

 （4）

 

e1 = (1, 0, 0, · · · , 0)T （5） 

H = (h−w, h−w+1, · · · , hw) （6）

最终，根据平滑系数将原始光谱加权求和，得

到平滑光谱，平滑后的光谱通过式（7）计算。 

xi,s =
1
H

w∑
j=−w

xi+ jh j （7）

式中：xi,s 为平滑后光谱在波数 i处的吸光度；H为

归一化因子，是平滑系数的和，通过式（8）计算；

xi+j 为原始光谱在波数 i+j处的吸光度；hj 为平滑系

数，通过式（6）所示的最小二乘多项式拟合计算。 

H = h−w+ · · ·+h j+ · · ·+hw （8）

对含有 3个吸收峰的模拟光谱进行分析，不同

窗宽的平滑结果如图 3所示。随着窗宽的增加，噪

声变得更低，光谱更平滑，但吸收峰的强度也变

低。窗宽过小时，消除噪声的效果较差；窗宽过大

时，可能会丢失部分光谱信息。为了在保留光谱信

息的同时有效消除噪声，文中根据缓冲层烧蚀特征

气体的红外光谱特征对原始光谱进行分段，在有峰

区域和无峰区域采用不同的窗宽。
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图 3   不同窗宽的 SG 平滑结果
Fig.3    SG smoothing results for different window widths

  

1.2.2    基线校正

FTIR光谱分析中应用最广泛的基线校正方法

是 airPLS[35]，但其校正结果受平滑参数 λ影响。在

吸收峰区域，过小的 λ会过分拟合基线，如图 4所

示。人为选择合适的 λ十分困难。在峰重叠和包含

复杂基线的情况下，airPLS的校正效果不理想。

为了解决这一问题，引入惩罚因子以自适应地

调整 λ。惩罚因子计算如下： 

αi =
|xi− zi|

max(|X− Z|) （9）

式中：αi 为第 i个波数的惩罚因子；xi、zi 分别为第

i个波数的吸光度和基线值；X、Z分别为光谱和基

线向量。

拟合的基线向量计算如下： 

Z =
(
W+αλDT D

)−1WX （10）

, · · · ,
, · · · ,

式中：α为惩罚因子向量，且 α = (α1, α2  αi)；D为

二阶差分矩阵；W为权重矩阵，且 W = (w1, w2

wi)。权重 wi 的初始值全为 1，且通过式（11）进行迭

代更新。 

wi =

®
logistic (xi− zi,md− ,σd−) xi≥zi

1 xi < zi
（11）

式中： d−为拟合误差 xi−zi 中小于 0的集合 ；md−、

σd−分别为 d−的平均值和标准差。 

1.3    特征变量筛选

采用 CARS[36]筛选烧蚀特征气体红外光谱中

的特征变量。首先，对所有光谱数据进行建模，采

用蒙特卡洛采样法进行 N次采样，并建立偏最小二

乘回归模型。然后，通过指数衰减函数去除回归系

数较小的波数。保留率计算如下： 

Rn = ae−bn （12）

式中：Rn 为第 n次采样的保留率；a、b为常数。  
a =
Å

M
2

ã 1
N−1

b =
Å

ln
M
2

ã¡
(N −1)

（13）

式中：N为采样总次数；M为光谱总数。

最后，对回归系数绝对值较大的波数进行回

归，并建立回归模型。交叉验证均方根误差最小的

变量子集为最优结果。 

1.4    定量分析模型

采用 PLSR[37]建立浓度定量分析模型。首先，

根据式（14）对光谱矩阵 X和浓度矩阵 Y进行

分解。 
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
X = TPT+EX =

f∑
k=1

tk pT
k +EX

Y = UQT+EY =

f∑
k=1

uk qT
k +EY

（14）

式中：f为主因子数；tk、uk 分别为 X和 Y中第 k个
主因子的得分；pk、qk 分别为 X和 Y中第 k个主因

子的载荷；T、U分别为 X和 Y的得分；P、Q分别

为 X和 Y的载荷；EX、EY 分别为 X和 Y的拟合残

差矩阵。

然后，通过式（15）对 T和 U进行线性回归。  ®U = TB

B =
(
TTT

)−1TTY
（15）

式中：B为回归系数矩阵。

最后，预测各组分气体浓度。与式（14）类似，

根据 P得出预测光谱矩阵 Xn 的预测得分矩阵 Tn，

如式（16）所示。最终，通过式（17）得到预测浓度矩

阵 Yn，进而得出各组分气体浓度的预测值。 

Tn = XnP
(

PTP
)−1

（16）
 

Yn = TnBQ （17） 

2    缓冲层烧蚀气体红外光谱分析实验
 

2.1    标准浓度气体分析实验

标准浓度气体分析实验平台如图 5所示。光

谱仪的光程为 10 cm，扫描波数分辨率为 1 cm−1，每

张光谱图扫描 16次。以标准浓度的 CH4、C2H6、

C2H4 作 为 目 标 气 体 。 所 采 用 的 CH4、 C2H6 和

C2H4 浓度分别为 20×10−6、5×10−6、50×10−6，多组分

气体为 3种标准浓度气体的混合，背景气体为高纯

度 N2。
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图 5   标准浓度气体分析平台
Fig.5    Standard concentration gases analysis platform

  

2.2    缓冲层模拟烧蚀气体分析实验

通过模拟烧蚀实验，得到不同烧蚀缺陷程度

下的多组烧蚀特征气体。实验装置如图 6所示。

试样的上层为缓冲层，下层为绝缘屏蔽层，尺寸为

2 cm×2 cm，缓冲层厚度为 2 mm。缓冲层上方为电

工铝球电极，绝缘屏蔽的下方为黄铜平板电极。试

样置于密闭容器内，防止气体扩散。上下电极之间

施加 1 kV、50 Hz的电压，模拟铝护套与缓冲层接

触位置的烧蚀情况。分别采用 FTIR与气相色谱仪

分析烧蚀 0~3 min（步长 0.5 min）时实验腔内的特征

气体浓度。将 FTIR光谱分析结果与气相色谱的分

析结果进行对比，以验证光谱分析结果的准确性。

气相色谱仪型号为 ZF-301B，采用氢火焰离子检测

器，载气为 N2，每次气体进样量为 1 mL。
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图 6   缓冲层模拟烧蚀气体分析平台
Fig.6    Buffer layer ablative gas analysis platform

  

3    实验结果分析
 

3.1    单组份气体分析结果

对单组份标准浓度气体分析所得到的 CH4、

C2H6、C2H4 红外吸收光谱进行预处理，预处理后的

红外光谱如图 7所示。3种特征气体的光谱基线基

本重合且位于零线附近。预处理后的光谱并未发

生基线漂移与畸变现象。
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图 7   单组份气体的红外光谱
Fig.7    Infrared spectra of single-component gases

 

每组特征气体测量 5次，单组份标准浓度气体

的分析结果和分析误差如表 1和表 2所示。3种特

征气体的测量均值均接近于标准浓度。其中，

C2H6 的平均绝对误差（mean absolute error, MAE）和
均方根误差（root  mean squared error,  RMSE）最小，

分别为 0.66×10−6 和 0.752×10−6。C2H4 的平均绝对

百分比误差（mean absolute percentage error, MAPE）
最小，仅为 4.04%。C2H6 的浓度最低，因此其绝对

误差较小。而 C2H4 的浓度最高，因此其相对误差

较小。3种特征气体的 MAPE均小于 15%，满足高
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压电缆缓冲层烧蚀特征气体分析的要求。
 
 

表 1    单组份气体的分析结果
Table 1    Analytical results for single-component gases

 

测量次数
各组分浓度测量结果/10−6

CH4 C2H6 C2H4

1 17.5 4.7 47.3

2 19.3 4.0 48.7

3 20.7 3.9 49.6

4 19.3 4.8 47.4

5 18.9 4.3 46.9
 

 
 

表 2    单组份气体的分析误差
Table 2    Analytical errors for single-component gases

 

气体
种类

测量均值/
10−6

MAE/
10−6

MAPE/
%

RMSE/
10−6

CH4 19.14 1.14 5.70 1.336

C2H6 4.34 0.66 13.20 0.752

C2H4 47.98 2.02 4.04 2.259
  

3.2    多组份混合气体分析结果

混合特征气体预处理后的红外光谱如图 8所

示。经过预处理，红外光谱不存在基线漂移。混合

气体在 950 cm−1、1 305 cm−1、2 954 cm−1 附近分别

出现 C2H4、CH4、C2H6 的吸收峰。由于 C2H6 的浓度

较低，C2H6 的吸收峰不明显，且 CH4 和 C2H6 的吸收

峰重叠严重。
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图 8   多组份混合气体的红外光谱
Fig.8    Infrared spectra of multi-component gas mixtures

 

多组分混合气体的分析结果和分析误差如表 3
和表 4所示。混合气体中 3种特征气体的分析结

果均值均与标准浓度接近。C2H6 的 MAE和 RMSE
最小，分别为 0.88×10−6 和 0.955×10−6。C2H4 的MAPE
最小，仅为 4.32%。各组分的 MAPE均小于 20%，

满足缓冲层烧蚀特征气体分析要求。表明所提出

的方法能够准确分析 3种特征气体混合时的各组

分浓度。 

3.3    烧蚀特征气体分析结果

模拟烧蚀实验得到的特征气体分析结果如图 9—

图 11所示。随着烧蚀时间的增加，3种特征气体的

浓度均呈上升趋势。其中，C2H4 的浓度上升最快，

C2H6 的浓度上升最慢。表明这 3种特征气体的浓

度能够表征缓冲层的烧蚀程度。以气相色谱仪的

分析结果为标准，FTIR光谱的分析结果与气相色谱

接近，分析误差满足测量需求。此外，经时序分析，

光谱分析与特征气体浓度输出的耗时小于 15 s。
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图 9   烧蚀特征气体中 CH4 的分析结果
Fig.9    Analytical results of CH4 in the ablation

characteristic gases
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图 10   烧蚀特征气体中 C2H6 的分析结果
Fig.10    Analytical results of C2H6 in the ablation

characteristic gases

 

表 3    多组分混合气体的分析结果

Table 3    Analytical results for multi-component gases
 

测量次数
各组分浓度测量结果/10−6

CH4 C2H6 C2H4

1 22.3 5.3 52.2

2 19.2 6.1 49.6

3 23.1 5.9 52.1

4 22.5 5.7 53.3

5 20.2 6.4 52.8
 

表 4    多组分混合气体的分析误差

Table 4    Analytical errors for multi-component gases
 

气体
种类

测量均值/
10−6

MAE/
10−6

MAPE/
%

RMSE/
10−6

CH4 21.46 1.78 8.90 2.089

C2H6 5.88 0.88 17.60 0.955

C2H4 52.00 2.16 4.32 2.372

97 门业堃 等：高压电缆缓冲层烧蚀气体红外光谱分析方法  



 

气相色谱
红外光谱
分析误差

0 0.5 1.0 1.5 2.0 2.5 3.0

烧蚀时间/min

C
2
H
4
浓
度
/1
0
−6

−20

0

20

40

60

80

100

120

图 11   烧蚀特征气体中 C2H4 的分析结果
Fig.11    Analytical results of C2H4 in the ablation

characteristic gases
  

4    结论

文中建立高压电缆缓冲层烧蚀特征气体红外

光谱分析模型，并通过单组分、多组分混合气体及

缓冲层模拟烧蚀气体实验验证其有效性，主要结论

如下：

（1） 提出高压电缆缓冲层烧蚀气体红外光谱分

析方法，通过自适应平滑去噪、基线校正、特征变

量筛选和定量分析建模，有效解决红外光谱用于缓

冲层烧蚀缺陷特征气体浓度测量的噪声影响、基线

漂移、交叉干扰问题。

（2） 开展单组份和多组分混合气体分析实验，

结果表明所提出方法可在 15 s内同时准确得到

CH4、C2H6 和 C2H4 的浓度，混合气体中的相对误差

分别为 8.90%、17.60% 和 4.32%。

（3） 开展缓冲层模拟烧蚀特征气体分析实验，

结果表明随着烧蚀时间的增加，CH4、C2H6 和 C2H4

的浓度均呈上升趋势。红外光谱具有检测速度快、

准确性高的优势，为高压电缆缓冲层烧蚀缺陷的早

期诊断提供了高效的解决方案。
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Infrared spectroscopic analysis of ablative gases in the buffer layer of high-voltage cables
MEN Yekun1,  REN Zhigang1,  GUO Wei1,  CHEN Ping1,  TANG Xiaojun2,3,  WANG Shihang2

(1.  State Grid Beijing Electric Power Company Research Institute, Beijing 100075, China; 2.  Xi'an Jiaotong University

(State Key Laboratory of Electrical Insulation and Power Equipment), Xi'an 710049, China; 3.  School of

Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract：Ablative defects in the buffer layer of high-voltage cables are important causes of power cable failures. Buffer layer
ablation releases gases, and some components of these gases and their concentrations can characterize the degree of buffer layer

ablation  defects.  Fourier  transform infrared  spectroscopy  for  buffer  layer  ablation  gas  analysis  has  the  unique  advantages  of

speed, sensitivity, and non-destructiveness. To address the challenges in the detection of gases from high-voltage cable buffer

layer  ablation,  namely  noise  interference,  baseline  drift  and  cross-interference,  a  buffer  layer  ablation  gas  Fourier  transform

infrared spectroscopy analysis  method is  proposed.  The proposed method is  validated by standard concentration gas analysis

and ablation characteristic gas analysis experiments, using CH4, C2H6 and C2H4 as characteristic gases. The experimental results

show that the three characteristic gas concentrations are related to the buffer layer ablation defects,  and the proposed method

can accurately analyze the concentration of the characteristic gases from infrared spectra, with relative errors of 8.90%, 17.60%

and 4.32% for CH4,  C2H6 and C2H4 in mixed gas, and the detection period is less than 15 s. This method can provide critical

technical support for rapid, high-precision diagnosis of buffer layer ablation defects in high-voltage cables.

Keywords：high-voltage cables; ablation; infrared spectroscopy; noise; baseline drift; cross-interference; characteristic gases
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