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Dynamic frequency aggregation control strategy of meshed
distribution virtual power plant

XIAO Xiaolong"?, SHI Mingming"?, WU Fan"’, LU Xiaoxing'?, GUO Ning"?, GUO Jiahao"?
(1. Jiangsu Electric Power Test Research Institute Co., Ltd., Nanjing 211103, China; 2. State Grid Jiangsu Electric Power Co.,
Ltd. Research Institute, Nanjing 211103, China)

Abstract: To fully leverage the characteristics of various distributed resources and the controllability of distribution grids for
delivering higher-performance and dynamic ancillary services, a dynamic frequency aggregation control method for meshed
distribution virtual power plants (MVPP) is proposed. Firstly, the overall architecture of MVPP is defined, and a frequency
control model capable of aggregating the dynamic characteristics of its internal distributed resources for primary frequency
regulation scenarios is established. Subsequently, an adaptive dynamic frequency matching control approach is employed to
address the control design challenge of the dynamic frequency aggregation model. The desired characteristics are decomposed
through online adaptive approach, and a local feedback controller is designed for each device using an H,, optimal robust
control method to precisely and dynamically match the decomposed desired characteristics for primary frequency regulation.
The simulation results verify the effectiveness of the proposed control method, demonstrating that it can significantly improve
the primary frequency regulation characteristics of the system through the complementation of various resources under
scenarios such as load disturbance and new energy output fluctuations. The proposed strategy offers a new solution for spatially
distributed aggregation units to participate in dynamic frequency regulation auxiliary services.

Keywords: virtual power plant; distribution network; primary frequency control; robust control; distributed generator; adaptive

control
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