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Fig.2 Flow chart of industry typical load
profile construction

2 IS RS RITE T
2,

1 PSS

R B 35S 7 TR AN A R [ £ 55 4% 5 R 1Y
FH H A, TR G B v e 0 4 M L, AT
PR AT AR S R B A 8o S e TR IR
7T BT T 25 e L A IR BE L AL | Sk
FEOCFE R, T LA Ay 4 T A0 P P () S8 ) o

fiEs B NP BE RN AR X =
(X1, %, -, x,n=1,2,--- ,N}o HF" n £ i A~ HL7I
Yy 56T W87 26 R 2 { X Xois o+ s X b L
o T R B e A A
2.1.1 SRR AR

Shy 4T 2 PR E R B e R, SO e R
I VAN ORI S =7 T

R AEHEER

Table 1 Load characteristic indexes
B far R AIE E X At B

H i 2% Py = KXo/ Xinax 00:00—24:00
11:00—12:00. 17:00—18:00
RUEFHAR Pr= Xapar/ Xov ) ’

REFEE P2 = S/ 20:00—21:00
o 09:00—11:00. 15:00—17:00
e 7 R P53 = Xpeakav/ Xav ’ ’

R 3 = kv 19:00—20:00
07:00—09:00. 12:00—15:00
TR Py = Xoouderar /Yoy N N
TRIRBAE Po=Xooueear/ X000 19:00. 21:0023:00
BAMEBE  Ps= Xuiga/ X 23:00—24:00. 00:00—07:00

T 2 K H SRTT I s H9 F ST IR KA e T SRS B

BRI BUIT I Xy S 100 DT B FA) T I X poutaera 20 T39I ISF B 1) 672
T IIEL; Xy ay ST IRAT I BB AT S
2.1.2 AHUPEREAR

(1) F P S e B s 5547 Ml S 67 fp 22 ] 1)
R CHE B

(2) F P S Y e S s 5547 Ml S 67 i 22 ] 1Y)
B 2B} 8] 25 ) (dynamic time warping, DTW) & .
2.1.3  JHHRHETE bR

(1) I i A 2, B AT P H BB % B .
AR A

(2) M P #3750 T i o
2.1.4  PEhPEREDR

(1) FP 80 H ] e 6 iy pth 2 g e {5 it 0k
T x,, A R A A W S B LT K
(Xims s Xty Xy Xty s s}y £ > mHET —t=m, H
x, O R MR R A i AR ¢ 20 A A AR
m I TEN T A RS, TP m 4% 4.

(2) PP S0 A A7 2R A HES L HE
GV FH T 1 P By S A P H A i 2 A 38 3
PERIS IR, TR

H(X,) =- ZP/‘ In(p;) (7)

j=1

A HX,) D9 ity S8 TR A B 2k 1) HE
G q 9 nl RERYHEFIRLBOCRE, X T 45 E YA
YERE 1, g=1!, SCH 1R HE 45 p, a5 j R HES IR AR I
()PP 90 v B R R o T R B HE B 9 (L v,
W B 8] 1371 B 52 5 PR M BE R e
22 HAEGRIFHETE

ANTR AT M 80 37 55 S W 1 P AR AN [ s ]



73 FRIET: 45 T OCSVM (AT L S BRAE S5 b B vk

BOMZRAE T 0 I B0, AN [ 37 5t v it B 281 B 67
o7 AR AS T T S e DA 70 77 375 5 1 T P 1 0K O o,
HRA ST 7 e Y E PR B Sl S I A
RAE T N R A2, BEAS 2 WL A 45 T 1 B 1Y
BN, K JE 2 AT AR S i B A U

WA — i L T B R HE 1 & WAL TS
W, W T 2GRN L TR R
SR B 2T B 110 22 S PRSI S P, AW E &8 A
FROASCER, T S BT PR R R i B R o A
R, BEWTIZAR AR 015 B 2 MO, Y25 PE O 1y STk
WA, SO SRS 2.1 50 A B AV RRAIE X R [
st i B2 A TITAS .
23 HEHEEMY

I 4 B (principal component analysis, PCA)
S — I R RRE R 4 )5 5. PCA s
T A R AR (2 03 ) ke die KA B 14 07 22, [W) g
I IR GRS B AR RS o S, N DR B AT AR
AL 3, SR 5 TS 7 22 R0, ISR i AR AEAELAN
FROE T & o 38 E PRRHE (E AR B R JLAS 32 4
VEJBTRHIE, 7] LA S8 AR R 2 3, 25 BRIk v
I P RO AR AR B, R OR B R Ay I kA (5 L, R
Je SR S i 0 8 4L g o P BT RRAE

3 ET OCSVM T HHEREFHI %

3.1 OCSVM &%

TEARZ 58 Rl J5 ik v, B2 SR ) s LR L
RLAFROPERE R IZ MR T 4432 560 2. 0CSVM
J& — b 3 F ¥ M) & ML (support vector machine,
SVM) 4 TG W B 2% > B, H H w2 i de KAk 4y
- S e 2z B R R, R R R A S R
Bl X 40 IF, (AR A RE A A0 28 IS AT RE 22 1Y IE 7 4
A, OCSVM fifi A% sR I AR e ML B I, W LA
He B M i 23 TR RO 2 = 4E 25 I RP, d . D
23[R AEE . OCSVM TR S i B8 - 11 14 2 2 AT LA
FoRA—A AR A, n=t(8) L = (9) Bk,

) 1 R 1 ng
—|wl* + - 8
o e Zé—‘ o (8)
s.t. w¢(xr)>p_§r
£=0 (9)
r=1,2,---,n,

e wol B [ 45 oo i A% ks & A 5t 28 o
G(x,) AR AE WS R, SCHP b B e A% pR G v
TS L WU A RN AT A 2GR REAS R
DAL B ARl 1o fie /M H AR eR R0k #1281 —
AR A )RR YT, ] IR 2 R 2R R AR, AT TR

o 2 25 ] v S BGOSR 50 2
OCSVM B sRER fx) 1 LU
. 1 gx=0
f(x) =sign(g(x)) = {_1 2(x) <0
o g(x) = wTK(x) — p s PRI E I E5 R, K(x)
R W i AR AR S x B B 3 R 4 SRR AE 2 [R) Y A R
o £k 1 MBI R 2 E B R, £ -1 Wk
AR R B
S AL A FEA R S R, DT
FEA B B HERE B . %5 vk B 2Ll A /E OCSVM
ST — A B 77k, $5 v S5 A il i o 0 2
T, 4 TR 2 g ST 1.0 A, BEA% SRS A 3 [X 43
P2 1 H A B 05
Zmax — 8(X) (11)

fx)=
|gmax|

Ao ) LT 0 PREE s g A VI ZRAE
AR SR PR B KA, ANIEL 3 R o dE LR
B R SR eR U S B R 2 ) Y 22 5, ] LA
FE VPR LB BE R . IR A o B 1.0, T
B AU A3 A0 B 2 v T 1.0, B R A A
o orBEy o Jm kAP PE LA, AT DR B A
15353 Bl A5 G I 1R, AT B SR 955 b i IO A [+] )
B AT IR AR AL o XA OT A SR T S
FGR i) SRABURE, a1 RIS SR iy AT S A FHE
% = ERFA

(10)

St

3 OCSVM S #ETRE
Fig.3 Schematic diagram of OCSVM classification
32 ETHARPEEFHNREIBIRGE
S G 3 B 2R P AT R S R
A e S e B vy i 255 B IR P AN ]
RN B TURTRAE . R i B LU P A
Al 750 L, TR P 238 S W T o0

1
s, = Zwiqia,- (12)
i=1

P s, WP n BEEGE SRR w5 i A LAy
Yy B RBE BT A KRB L HE; g o 5 i
BG5S 45 a W FTPAESE i ORI F



R LHER 74

B SRR R 1O LAY SR . AR PR LR A R BETE
Ay P AT HERE AU Ay i,
FRAE AR T BEAEAE 5787, DI S5 BT R AIE S8 FH P 19
R o

3.3 BEHFIELR

L5 LR, SCh AR R .

(1) B3RS w3 . RIOH P s s ot
PEATIEDE . oM A —fbAb B,

(2) ARV 37 se 4 B, i ] HDBSCAN-#(
P K-means ISR LAE TV 7 F fL 37

(3) AL FREFY . JE TR H Y S 37 55, 48
U P AEAS 50 T 1 T FLARRAE .

(4) SE kil 53015 . FIH OCSVM Hik
X P B R R RRAE R A T S s, I P
TES S TR ES .

(5) S P e Srh . AR w6 H
FUHEATHE R, A W 0 S w0 i B P, e
SR P RSG5 R U

HARS O HRESE G E] 4 B o

i [P |

LRl ! .
D MR ]
' FRAX

| 5 [OCSVMEELT #3571
v !
PURAL (SR RS E

4 BEFETAIES
Fig.4 Framework for anomaly feature analysis

4 HBHISH

Shy B8 UE SCH B B R, SR RS O R b X
867 NGB AL AT 2023 4E3 A 1 H—
2023 4F 11 H 26 H /9 H H 17 1y B8 264 758461 43y,
Hor RAES 2 15 min, B KA 96 P RAEA
4.1 T BB TR SHE

Xof A FH P T R A A S R A T AL 3, A FE
BRI — b B B S, R TRAL B B
fii 1] HDBSCAN L #1731, TEWI IR S H0)
W b, ZHGT KT RE S S ECER P RRIE A 3L
HIFE, BT 2 00 B0 1 400 43 A s s S8/
AT e PR B B ALY o T 3 e 2 R . XTSI
1) 2 B AT O LT H 3T 35 48 B 3 BORF- 2 3
Y #54% T 8 % (Davies-Bouldin index, DBI) %, 4% 5
mE s Fims .

N 10.800
0.575| L TOMAK {0.775
0.550 | {0.750

= 0.525 10.725 _

= 0.500 | o 10700 2

0475 | & {0.675
0.450 /‘\/\/\" 10.650
0.425 | {0.625

400 e 0,600
(3.3) (3.4) (43) (44) (5.3) (5:4) (6,3) (1.3)
(R NBERAN, T/ MRS
5 FESHTHIREFHF DB
(B s L i1<30%)

Fig.5 Silhouette coefficient and DBI under different
parameters (noise ratio < 30%)

2 PEA7 o7 0 2R 1 23 1] 43 A R L — R P
WG 2 B AN S T 30%, Bk B S N TR
30% LAF HAF¥1%0E R 40R K . DBI /MY S 40
H1EN HDBSCAN B kv S8 e . k=
BALEE e/ NER/ANA S, S/ MEARECH 4, HA S5
PREFR L BRIA B S

HDBSCAN 3 i: 1) 4 25 i JCHK 1) RSB, -5
R H P AR R 5. kR R P RS
SN A FEEL 22, FH N b3 0 55 /N K/ N R R /N AR
B P A B AR 2~6., RIS RERAY I
1) LAY 7 far A ] 6 i

M 6 AT LA Y, B P A 2 RS W
B P 4 380 B 0 RO ARE, R TAE
i 16 FH PR 50 v, T B R R R ARG,
A H R A =R . F P 10 SR ) AR = LY
PR Aol 11 R B far B AR I A [ A7 e 2 v o FH P
22 WU TR s B H DA P R ) A = i e, s
ZAP Rl R AR, L R R B 4%

25 55— By Bt HDBSCAN H9k 2K 5, 115 %)
2829 I LA A s R o RS BB, KRS
FH P B8 671 g 2 40k BRI P A AR, ol FH Sk ) K-
means AR EAT RIS, BT, R FNIERIESE
BBt K-means [ EAEREEH N 12, SR)5, X5
AT R0 AT R A M 2 B R I rhuo i RK
IRER RS . V& BB A V- S0 - WA i b v 22, fiff
FH/INT B A 1 G Ao il 28 60 R 28 o iEA T T . d
Jii s B BT AT B e i 4R D T 20 AH R Y R, 15 3
12 FfAS [ A7 Ml S 280 67 faf JE 2, G PP 47 L s 75
FEAME 7 B

TPl 7 AT, A% 55 SRR S ATk Y B 67 e
L8 Wb B R TZAT I B T SRR AE . AT
WA A A, AT SE LT, B LA SE AL
e A B [ S8 AT, %l i ) e ok R AR



75 FRIET: 45 T OCSVM (AT S fp Al S5 BRI vk

1.0F
0.8
0.6

& /p.u.

04}
02}t

i (6] /h
(a) FH P 43R RIS

1.0r
0.8

u.

s 0671

%/

5 10 1 20 25
N 8]/h
(b) F 108 R 47 faf TR A

() R P22 W MG A T2
F P At i 2 — F P JL R TS

E6 RAPRBGFERES
Fig.6 Typical customer load curves

1.0 1.0

5 0.8

£ 0.6

= 0.2

O 1 1 1 1
5 10 15 20 5 10 15 20
I 18] /h 5[] /h

(@) S5 1 (b) I 522

10 15 20

N ) /h 18] /h
(c) JALIZ 5 (d) #841755%12

— MR — kA
B7 TSR GAEES

Fig.7 Typical industry load curves
VRSt NI, fE55 1 Mg 8 ol DI
GEENHAXT = AT K- FECZ T, st 2 i
far W2 B A/, TR T 5 LBt AR+
DRIFETIRARRS . TR 12 iR
HH B A AR, SR B TR TP RS LA i B
F18 e AR, Al T R 2y R R TE H M B A i B

B LA AGE B A o A7l MR A e 2SN (U
7 T AP R FL T 778 A RS R, L R e 1
FOXT WA FL A SRS P RRAN Bl 17, A R, ) 8] B 8 1D K
AALAE BRI AR
42 (T AR ERRAGZE

HRAE 2.1 19 AR AE SO %, S IR T P g
BB JE 25 010 AR AR 00, 19 3 7 5 11 4
TR o 15 B A B A S e AR A B R RV
R EHE ™ AR, 3% A b 9 47 43
I, AN R P R 5 R (RN, SRR AR Y £ BB
e, ArEVEBAR . RGOl M2 671 o 3 55 1 40
Y85, TR AN 0w U RE B9 F 2 {H, AR5 T
P AL X 1% 37 55 1) AR AT PPAl . A5 3
PR 2 s .

x2 BHRLEAWES
Table 2 Comprehensive scenario score

it LERTESY Yisit LERIFAY
1 0.597 7 0.474
2 0.282 8 0.468
3 0.809 9 0.288
4 0.549 10 0.270
5 0.303 11 0.299
6 0.240 12 0.400

THE 25 AL R i 1 A [] 7 g 3 5 76 FH LR AE
EEM . S a5 (N a 1) BoR H P s
ey i) B EL A I 2 1 P L RRAE, T AT AR 43 1 5 (A
s 2) WP R TR far sl A G5 FH AT o 1A
SR, T RBOE I ZRG VRN 715 7T DL WY
AN [R) 70407 37 5% B AR G T L, I oM SR S ATk Ay
fiE S YU B AT SR A

Syt G REIE TCAR R, i FH PCA X PIT AR RRAIE i
7R 2 A B, 4 1 1 R A AR R A0 R Ty 2201
TR R AT RE 25 B T B3, B4 IAE R OCSVM A
RIF I . OCSVM 3 # H TR = 5, X
RRE WA AR A9 1 #8055 % B . 7EX
Fis 50T, AR SE 2o % 5 19 W 2% > O vk (a8
B UE) KAk S8 SCHk [29148 i —Fh e W B 59 5
2%, I PG 5 8 e S5 3T 4 22 8] 14 1 25 43 A Ak
11 OCSVM B S E Ml . %7 XA [F 25 AL T
Bl BA S, SEa kML, BER T
AR . FEXT BT PCA i EE S, A
OCSVM X B4t J5 M ReAiE i AT 300G, LA TR A7
A 5 55 v i S AT o AR, IR A (1) At
(12) T P 8 355

VL P 22 R T w45 0. P



& AH) ALK 76

P 6 SISV B 2%, 464 RER V545 SR
H 3R X PSR SRR, 73]
PRI P 055 S 4R 0293,

K3 AR EHERERIER

Table 3 Anomaly scores for different
scenarios of user 22

AP gl i R rEAT Y LR
st &M L BE s WS

1 52 0.227 0.566 3 0.809 0.104
2 47 0.205 0464 12 0.400 0.038
3 27 0.118 0.840 5 0.303 0.030
4 8 0.035 1.001 11  0.299 0.010
5 89 0.389 0.953 2 0.282 0.104
6 6 0.026 0.973 2 0.282 0.007

Kl 8 7R T35 5 P 22 AU P 87 Ay Ay
TR XS H o AR 3 AT, 22 i i 8 ik
& 3 e R 5 RN 0.303, AR IZ 5 Hifn
far FFAE 5 47 b S RYEEAF A ST o A O L
87 Wy ARk 2 7ElR] — st h P 172, B
T B R 1, R Z N RE4E R 5170
AR CAE R 3 22, 1 8 A T AL 43T i —
HAES T .

0.9 p -+ HIFI8TH G HIZR2IFAE (S2H)
0.8 | F P22 e th 26345 4E CQEH)D
WS R AE T A

E 8 = 5 MEFMERES
Fig.8 Typical feature patterns in scenario 5

SUE B SC R gk A A, R P RS A
Y5 (R P e B R0 0 F W 3 5, SR T P i
37 50N I B far th kb 22, X T 22 9375 5)
22 A R 375t (RI25 i P 4= 8 1 e 37 5%, %
P 22 35 1—6) B fa i il 2k 24T 47 Mk R ik 5
WA, RZ AT T A T P AE P RS O T
R 5 W A0, IR AR RS 15 00 AR /N e R 47
HER?, BT 100 24 1 B9 5 #4530 TR DL an &l 9 frs .

NI 9 T LU B, Bl P 5w AR 20 HE P S
B, Mgt 2y 5 5 45 0 TF IR s s/, IR TE SR &
SR THEIL 0.8 W TF22 . X RIRZHUH P

0 20 40 60 80 100
St AR
9 REGHHRF
Fig.9 Anomaly score ranking
5 B AR AR, RO DO P B S R AR LA
FHo HEX AR Bm i P AT S kA, B
AL A AT MR AE S B P A R
Yt R WSS R R, R Ao R 2.858, R
L LE ] P e e 5 T Y e i AT AR B, T
TE 223 50T WA 73 AR B, S5 @ 1503 1,749,
XERNZGRITEGEHZE T EZ N5
T AT M RRE, A S b Ao BN ZE G AT
h % S H T AT R S R Y A O, 3 0l X
2 [& P75 OCSVM((single-scenario OCSVM, SS-
OCSVM) #1 % J& £ 3 5t 1) OCSVM (multi-scenario
OCSVM, MS-OCSVM) Wi Fft {5 5L & 5+ 45 43 K T
0.81 By AT i HE Ay, HEAr 5 R WK 4 Ik 5.
F4 BREEREHEERREFEHEIHF)

Table 4 Single-scenario anomaly investigation results
(sorted by single-scenario score)
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Table 5 Multi-scenario anomaly investigation results
(sorted by multi-scenario score)
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Table 6 Comparison of precision rates for OCSVM
models based on different methods
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trend in large injection molding machine technology at home

OCSVM-based method for identifying abnormal load characteristics in industry

CHEN Guangyu', YANG Guang', SHI Weijin’, CAI Xincan’, CHEN Wanging’, LIU Hao'
(1. School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China; 2. Quanzhou Power
Supply Company of State Grid Fujian Electric Power Co., Ltd., Quanzhou 362000, China)

Abstract: To address the challenge faced by power grid companies in accurately detecting changes in user industry
information, which has been complicated by the increasing variability of industry characteristics in recent years, a data-driven
approach for identifying anomalies in load characteristics is proposed. Initially, a two-stage methodology for developing typical
load patterns for various industries is presented. The hierarchical density-based spatial clustering of applications with noise
(HDBSCAN) technique is utilized to extract typical daily load curves for users under different scenarios. Subsequently, these
extracted daily load curves are clustered using an improved K-means algorithm to establish typical load patterns for the
respective industries. In the second phase, a multidimensional intelligent diagnostic method for load characteristic anomalies is
introduced. User load characteristics are constructed, and the entropy weight method is employed to evaluate the relative
significance of typical industry scenarios. The one-class support vector machine (OCSVM) algorithm is then utilized to
quantify the degree of anomaly present in user load characteristics across each scenario. Comprehensive suspicion scores are
calculated and ranked to accurately identify users exhibiting abnormal load characteristics. The effectiveness of the proposed
method is validated through the analysis of actual user data from a specific region. The results demonstrate that the method is
both feasible and practical for constructing typical industry load scenarios and for the identification of load characteristic
anomalies.

Keywords: data-driven; load characteristic anomalies; hierarchical density-based spatial clustering of applications with noise
(HDBSCAN)-improved K-means algorithm; multi-dimensional scenario analysis; one-class support vector machine (OCSVM);

comprehensive suspicion score
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