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基于 OCSVM的行业负荷特征异常辨识方法
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摘　要：为解决近年来用户行业变化特性加剧导致的难以准确辨识用户档案信息变动的问题，文中提出一种基于数

据驱动的负荷特征异常辨识方法。首先，提出一种两阶段行业典型负荷形态构建方法，利用基于层次密度的含噪声

应用空间聚类（hierarchical density-based spatial clustering of applications with noise, HDBSCAN）提取用户在不同场景

下的典型日负荷曲线，并利用改进的 K-means 算法对提取出的典型日负荷曲线进行聚类分析，构建行业的典型负荷

形态；其次，提出一种多维场景负荷特征异常智能研判方法，通过构造用户的负荷特征，使用熵权法评估行业典型场

景的相对重要性，并采用单分类支持向量机（one-class support vector machine, OCSVM）算法量化每个场景下的用户

负荷特征的异常程度，通过加权计算得到用户的综合嫌疑得分并排序，从而实现对负荷特征异常用户的准确辨识。

最后，采用某地区实际用户数据进行算例验证。仿真结果表明，所提方法在行业典型负荷场景构建及负荷特征异常

辨识方面表现出良好的可行性与实用价值。
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0    引言

近年来，随着地区电网的快速发展和新能源渗

透率的不断提高[1]，区域内负荷用电特性的复杂性

和随机性呈显著上升趋势。尤其在后疫情时代，用

户用电行为的快速变化[2-3]以及所属行业的频繁变

动，导致原有的行业分类信息更新滞后甚至停滞。在这

一背景下，“源-荷”双重不确定性问题愈发突出[4-6]，

给电网的精细化调控和管理带来了巨大挑战。因

此，准确识别用户行业特征异常，对于提升电网调

控的智能化和精细化具有重要的现实意义。

近年来，国内外学者对电力负荷分类与辨识进

行了大量研究。文献[7]先采用多维尺度分析对楼

宇负荷数据进行降维，再使用高斯混合模型进行聚

类，显著提高了聚类效率；文献[8]提出一种基于灰

狼算法优化的模糊 C均值算法，提高了对初始聚类

中心的全局搜索能力；文献[9]提出一种基于空间

密度聚类和 K-shape算法的两阶段负荷聚类方法，

提高了对城市综合体负荷的聚类精度；文献[10]通
过分析用户的日负荷曲线与典型曲线之间的相似

度，评估其为养殖行业用户的可能性；文献[11-
12]通过阈值方法分别辨识路灯专变异常用户和线

损异常用户；文献[13]对学校用户不同时段的负荷

进行聚类，并与特定用电行为模式进行对比，检测

是否存在用电异常；文献[14]提出一种基于剪枝策

略的密度峰值聚类方法，用于划分行业典型用电负

荷并识别其中的信息异常用户。上述文献结合用

户的细分行业信息，采用曲线相似度或根据特征指

标设定阈值等方法对用户异常特征进行检测，取得

了较好的效果。然而，这些方法也存在不足，比如

特征考虑较少、未充分考虑用户在不同时间段或场

景下的用电行为差异，尤其应用于用电行为多样且

负荷特征比较复杂的行业时，仅靠单一的负荷曲线

或简单的相似度度量会存在一定的局限性。此外，

行业异常用户标签的缺失导致参数选择过程难以

系统化评估，常依赖经验判断，难以保证参数的最

优性。因此，迫切需要开发一种更全面、更精准的

结合行业信息的负荷特征异常辨识方法。

针对电网用户行业分类不准确且频繁变动导

致的台账信息更新滞后以及运维工作量较大的问

题，文中提出一种基于单分类支持向量机（one-class
support vector machine, OCSVM）的行业负荷特征异

常辨识方法。首先，利用基于层次密度的含噪声应

用空间聚类（hierarchical density-based spatial cluster-
ing of applications with noise, HDBSCAN）和改进的

K-means算法提取行业用户的典型用电场景和用电

模式，构建一个能够反映行业用电特性的特征画像

库。其次，为客观评估各电力使用场景的重要性，

 

收稿日期：2025-06-29；修回日期：2025-10-23
基金项目：国家自然科学基金资助项目（52107098） 

2026年 2月 Electric Power Engineering Technology 第 45卷　第 2期 70

https://doi.org/10.12158/j.2096-3203.2026.02.008
https://doi.org/10.12158/j.2096-3203.2026.02.008
https://doi.org/10.12158/j.2096-3203.2026.02.008


文中应用熵权法确定场景权重，并结合多维场景分

析与 OCSVM算法全面检测各用电场景和维度下

的异常特征。最后，通过计算用户的综合异常评

分，有效识别和定位行业异常用户。通过对某地区

橡胶和塑料制品行业用户实际用电数据的算例分

析，验证所提方法在构建行业典型负荷形态及辨识

负荷特征异常方面的有效性。该方法不仅能够准

确发现用户分类异常，保障电网收益，还能显著减

轻运行维护人员的劳动强度和时间成本，为快速筛

查特征变动以及识别行业信息异常用户提供强有

力的支持。 

1    基于 HDBSCAN-改进 K-means 的行业

典型负荷形态构建
 

1.1    HDBSCAN 聚类算法

HDBSCAN是由 Campello等人开发的一种基

于密度的聚类算法[15]，是对密度空间聚类（density-
based  spatial  clustering  of  applications  with  noise,
DBSCAN）的改进。与传统的 DBSCAN算法相比，

HDBSCAN在调参上具有显著优势，只需要选择最

小簇大小和最小样本数两个参数即可。同时，

HDBSCAN能够自动识别任意形状和不同密度的

集群，并去除噪声数据，不需要预设聚类数量和聚

类中心，可自动确定最佳聚类数目。然而，该算法

也存在计算复杂度较高等缺陷。

HDBSCAN算法的核心原理在于将密度变换与

层次聚类技术相结合，通过基于簇稳定性的方法提

取平面聚类，以有效地扩展传统 DBSCAN算法的

功能，其具体步骤如下：

（1） 在 HDBSCAN中，首先计算每个数据点的

核心距离，即数据点到其邻域内第 g个最近邻点的

距离，此距离反映了数据点在其邻域内的密集程

度。随后，定义可达距离为 a、b两个数据点间的欧

氏距离与其核心距离的较大值： 

dreach,g(a,b) =max{dcore,g(a),dcore,g(b),d(a,b)} （1）

dcore,g(a) dcore,g(b)

d(a,b)

式中： 、 分别为 a点和 b点的核心距

离； 为 a、b点之间的欧氏距离。

（2） 接着，算法利用可达距离信息通过 Prim算

法[16]高效构建最小生成树（minimum spanning tree,
MST）。该树结构映射了数据点间基于密度的紧密

连接性。在构建过程中，算法逐步添加当前 MST
与尚未连接顶点之间的最小可达距离边，从而形成

覆盖所有数据点的MST，如图 1所示。

（3） 构建层次聚类树时，算法设定最小簇大小

作为剪枝阈值，自上而下遍历聚类树的所有节点。

若子节点数达到或超过剪枝阈值则保留，未达到则

删除，从而形成一个优化后的压缩聚类树。

λ

Ci θ(Ci)

（4） 为选择聚类树中合适的簇，引入可达距离

的倒数 作为密度，用来计算每个簇的稳定性，稳定

性越大表示该簇结构越稳定，簇 的稳定性 的

计算方法如下： 

λ =
1

dreach
（2）

 

θ(Ci) =
∑
x∈Ci

(λx−λbirth) （3）

dreach λx

λ λbirth λ

式中： 为可达距离； 为样本点 x加入簇 Ci 时
的 值； 为该簇形成时的 值。

（5） 通过对簇稳定性的评估，算法选择最合适

的簇进行划分。此外，自动识别密度较低的数据点

并将其标记为噪声，最终输出包含聚类标签和噪声

点的聚类结果。 

1.2    两阶段行业典型负荷形态构建方法

传统 K-means算法使用欧氏距离计算样本与

簇中心之间的距离，这使得其对离群点非常敏感。

离群点可能会显著偏移簇中心，从而影响整个聚类

结果。为避免离群点的影响，文中采用基于 K-means
聚类的改进算法，首先通过 K-means算法对数据进

行初步聚类，计算公式如下： 

µk =
1
|Ck|

∑
x∈Ck

x （4）

 

(a) MST拓扑

(b) MST层次聚类树状

1.0
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可达距离

可达距离
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1.0
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0.4

图 1    g为 5 时的 MST 示意

Fig.1    Schematic diagram of MST with g=5
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µk |Ck|式中： 为初始的聚类中心； 为第 k个聚类中样

本点的数量。

µk

τ

然后，计算每个样本点 x与其对应簇中心 的

距离，并设定阈值 ，识别并过滤距离超过该阈值的

异常样本。接着，使用二次聚类对过滤后的数据进

行聚类中心的更新，如式（5）所示。 

µ ′k =
1
|C ′

k |
∑

x∈C ′k ,d(x,µk)≤τ

x （5）

µ ′k |C ′
k |式中： 为更新后的聚类中心； 为更新后第 k个

聚类中样本点的数量。

最后，将所有数据匹配到相应的簇中，获得最

终的聚类中心和结果，如式（6）所示。该方法能够

显著提高聚类中心的鲁棒性和准确性，有效避免异

常点对聚类中心的影响。 

A(x) = argmin d(x,µ ′k) （6）

A(x)式中： 为将样本点 x分配到最近的簇中。

文中采用一种两阶段的负荷直接聚类方法，对

用户的负荷进行典型负荷形态聚类。第一阶段使

用 HDBSCAN算法提取每个用户在特定时间段内

的典型用电模式；第二阶段采用 K-means算法对提

取出的典型场景进行二次聚类，获得行业的典型用

电场景。行业典型负荷形态构建的具体步骤如图 2
所示。
 
 

开始

数据预处理

设置超参数并运行
HDBSCAN算法

去除噪声点，
输出聚类标签

将每条负荷曲线
匹配到相应的簇

输出聚类结果

二次聚类得到行业
典型负荷曲线

是

否
是否满足要求?

获得用户典型
负荷曲线

初步K-means聚类

设定阈值过滤
异常样本

结束

图 2   行业典型负荷形态构建流程
Fig.2    Flow chart of industry typical load

profile construction
  

2    负荷特征构造及场景评估方法
 

2.1    用户特征构造

特征提取旨在识别和评估不同负荷场景下的

用电特性，获取原始数据中隐藏的额外信息，从而

提高行业特征异常识别的效率[17]。文中基于提取

负荷典型形态构建其峰谷时段、相似性、波动性等

相关指标，可以较为全面地体现用户的典型用电特

X =
{x1, x2, · · · , xn |n = 1,2, · · · ,N } {

x1,n,i, x2,n,i, · · · , xT,n,i

}
征。将包含 N个用户的用电数据表示为数据集

。用户 n在第 i个典型

场景下的负荷曲线表示为 ，其

中 T为负荷序列的长度。 

2.1.1    负荷特性指标

为全面刻画用户用电的负荷特性，文中定义表

1所示的负荷特性指标[18]。
  

表 1    负荷特性指标
Table 1    Load characteristic indexes

 

负荷特征 定义 时段

日负荷率 P1 = xav/xmax 00:00—24:00

尖峰负载率 P2 = xsharp,av/xav
11:00—12:00、17:00—18:00、

20:00—21:00

高峰负载率 P3 = xpeak,av/xav
09:00—11:00、15:00—17:00、

19:00—20:00

平期负载率 P4 = xshoulder,av/xav
07:00—09:00、12:00—15:00、
18:00—19:00、21:00—23:00

低谷负载率 P5 = xvalley,av/xav 23:00—24:00、00:00—07:00

xav xmax xsharp,av

xpeak,av xshoulder,av

xvalley,av

　　注： 为日负荷均值； 为日负荷最大值； 为尖峰时段
的负荷均值； 为高峰时段的负荷均值； 为平期时段的负
荷均值； 为低谷时段的负荷均值。
  

2.1.2    相似性指标

（1） 用户典型用电负荷与行业典型负荷之间的

欧式距离。

（2） 用户典型用电负荷与行业典型负荷之间的

动态时间弯曲（dynamic time warping, DTW）距离。 

2.1.3    用电特性指标

（1） 用户的用电倍率，即用户电能表所对应互

感器的倍率。

（2） 用户典型场景下的用电量。 

2.1.4    波动性指标

xt

{xt−m, · · · , xt−1, xt，xt+1, · · · , xt+m} t > m且T − t≥m

（1） 用户典型日用电负荷曲线的峰值数量。对

于每个 ，检查其是否为峰值需要满足以下要求：

， ，其中

xt 为用户典型日用电负荷曲线在 t时刻的负荷值；

m为时间窗口的长度，文中 m选择 4。
（2） 用户典型日用电负荷曲线的排列熵[19]。排

列熵用于衡量用户的典型日用电负荷曲线的波动

性和复杂度，计算如下: 

H(Xn) = −
q∑

j=1

p j ln(p j) （7）

H(Xn)

p j

式中： 为用户 n的典型日用电负荷曲线的排

列熵； q为可能的排列模式数量，对于给定的嵌入

维度 l，q=l!，文中 l选择 4； 为第 j种排列模式在时

间序列中出现的概率。计算出来的排列熵值越高，

说明时间序列的复杂性和随机性越高。 

2.2    典型场景评估方法

不同的行业典型场景反映了用户在不同时间
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段和条件下的用电情况，不同场景中的重要性因负

荷的不同而异。高峰负荷场景的重要性显然更高，

而低谷负荷场景的重要性相对较低。通过提取多维度

特征并应用熵权法，能够客观地衡量各负荷场景的

重要性，为后续的行业特征异常研判提供有效依据。

熵权法是一种基于信息熵理论的客观加权方

法，常用于多指标综合评价[20-21]。该方法利用信息

熵衡量各指标的差异性和不确定性，以确定各指标

的权重，进而实现对评价对象的综合排序。权重越

大，说明该指标的信息量越大，对综合评价的贡献

也越大。文中使用第 2.1节构建的典型特征对不同

场景的重要性进行评估。 

2.3    特征维度规约

主成分分析（principal component analysis，PCA）

是一种广泛使用的特征降维方法[22-23]。PCA通过

构建新的特征（主成分）来最大化数据的方差，同时

减少原始数据的维度。首先，对原始数据进行标准

化处理，然后计算协方差矩阵，并求解其特征值和

特征向量。通过选择特征值较大的前几个主成分

作为新特征，可以有效降低数据维度，去除特征中

的噪声和冗余信息，同时保留大部分原始信息，为

后续的异常检测提供高质量的新特征。 

3    基于 OCSVM 的行业特征异常研判方法
 

3.1    OCSVM 算法

Rd RD

在众多异常检测方法中，单类支持向量机因其

良好的性能和广泛的应用而备受关注[24-25]。OCSVM
是一种基于支持向量机（support  vector  machine,
SVM）的无监督学习算法，其目标是通过最大化分

类超平面与数据点之间的距离，将正常数据与异常

数据区分开，使得样本能够包裹尽可能多的正常样

本。OCSVM使用核函数的非线性映射能力，可以

将数据从原始空间 映射到高维空间 ，d、D为

空间的维度。OCSVM寻找最优超平面的过程可以

表示为一个二次规划问题，如式（8）、式（9）所示。 

min
w,ρ,ξr

1
2
∥w∥2+ 1

νns

ns∑
r=1

ξr −ρ （8）
  

s.t. wϕ(xr)≥ρ− ξr

ξr≥0
r = 1,2, · · · ,ns

（9）

w ρ ξr

ϕ(xr) v

式中： 为权重向量； 为偏移量； 为松弛变量；

为特征映射函数，文中选择高斯核函数； 为用

于权衡正则化项和惩罚项的超参数；ns 为样本数量。

优化问题的目标是通过最小化目标函数来找到一

个最优的超平面，同时满足上述约束条件，从而在

高维空间中实现对数据的有效分类。

OCSVM的决策函数 f（x）定义如下： 

f (x) = sign(g(x)) =
®

1 g(x)≥0
−1 g(x) < 0

（10）

g(x) = wTK(x)−ρ K(x)

f (x) f (x)

式中： 表示中间计算的结果，

为将输入样本点 x映射到高维特征空间的核函

数。 为 1则被认为是正常数据， 为−1则被

认为是异常数据。

gmax

为量化每个样本的异常程度，使用式（11）计算

样本的离群程度。该方法主要通过在 OCSVM中

引入归一化处理方法，提高异常检测的准确性和敏

感性，特别是当 接近 1.0时，能够更精确地区分

接近正常值的数据点。 

f ′(x) =
gmax−g(x)
|gmax|

（11）

f ′(x) gmax式中： 为归一化后的函数值； 为所有训练样

本中决策函数的最大值，如图 3所示。通过比较输

入数据点的决策函数值与最大值之间的差异，可以

定量评估其离群程度。正常点的分数接近 1.0，而
离群点的分数则显著高于 1.0，越离群的数据异常

得分越高。通过这种评分机制，可以根据数据点的

得分动态调整检测阈值，从而更灵活地适应不同的

数据分布和环境变化。这种方法不仅增强了异常

检测的灵敏度，也提高了检测结果的可靠性和适用性。
 
 

g
max

异常样本

正常样本

支持向量

O x
1

x
2

图 3   OCSVM 分类示意
Fig.3    Schematic diagram of OCSVM classification

  

3.2    基于用户综合评判的异常指标构建

异常得分越高表示用户是行业特征异常用户

的嫌疑程度越高。通过综合考虑每个用户在不同

典型场景下的负荷特征、场景的重要性以及用户不

同场景的比重，计算每个用户的综合异常评分： 

sn =

I∑
i=1

wiqiai （12）

sn wi

qi

ai

式中： 为用户 n的综合异常评分； 为第 i个典型

场景包含的天数占所有天数的比重； 为第 i个典

型场景的评估结果； 为用户在第 i个典型场景下
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的异常程度；I为典型场景数量。根据综合嫌疑评

分对用户进行排序，加权得分越高的用户，其用电

特征越可能存在异常，从而实现对特征异常用户的

精准定位。 

3.3    异常研判框架

综上所述，文中算法的流程如下。

（1） 数据获取与预处理。获取用户用电数据并

进行清洗、去噪、归一化处理。

（2） 典型用电场景提取。使用 HDBSCAN-改
进 K-means聚类算法提取行业典型用电场景。

（3） 用电特征构建。基于提取的典型场景，提

取用户在各场景下的用电特征。

（4） 异常检测与评分计算。利用 OCSVM算法

对用户的用电特征进行异常检测，并计算每个用户

在各场景下的异常得分。

（5） 异常用户定位与评估。根据异常得分对用

户进行排序，精准定位异常得分较高的用户，最终

实现异常用户的综合评估与异常识别。

具体异常研判框架如图 4所示。
  

异常用户辨识与定位

数据获取及预处理

提取用户典型用电场景

用户用电特征提取

OCSVM量化用户异常得分

构建行业典型负荷形态

数据准备

场景
划分
与
特征
提取

异常
用户
定位

图 4   异常特征研判框架
Fig.4    Framework for anomaly feature analysis

  

4    算例分析

为验证文中算法的有效性，采用南方某地区

867个橡胶和塑料制品行业用户 2023年 3月 1日—
2023年 11月 26日的用电负荷数据进行算例分析，

其中采样频率为 15 min，每天有 96个采样点。 

4.1    行业典型负荷形态构建

对每个用户的用电负荷数据进行预处理，包括

数据清洗和归一化处理。随后，将预处理后的数据

使用 HDBSCAN算法进行聚类分析，在初始参数的

设定上，参数过大可能会导致聚类中无法形成有效

的簇，并导致过多的数据被划分为噪声；参数过小

可能因数据随机波动导致创建过多的簇。对不同

的参数进行仿真并计算其平均轮廓系数和平均戴

维森堡丁指数（Davies-Bouldin index, DBI）[26]，结果

如图 5所示。

考虑负荷曲线的空间分布特点，一般用户的异

常负荷曲线数量不会超过 30%，故选择噪声点在

30% 以下且平均轮廓系数最大、DBI最小的参数配

置作为 HDBSCAN算法的初始参数设定。具体参

数包括最小簇大小为 5，最小样本数为 4，其他参数

保持算法的默认设置。

HDBSCAN通过构建密度关联的聚类树，识别

出每个用户的不同负荷场景。为避免用户聚类得

到的簇数过多，相应地增加最小簇大小和最小样本

数，使用户的场景数量在 2~6。聚类得到部分用户

的典型负荷如图 6所示。

从图 6可以看出，每个用户存在多种不同的用

电模式。用户 4表现出明显的双峰特征，白天工作

时间用电量较高，而在晚上和凌晨用电量较低，是

典型的日间生产型企业。用户 10为夜间生产型的

两班制企业，白天负荷较低而夜间负荷较高。用户

22则同时包含日间生产和夜间生产的特性，显示出

多种不同的用电模式，其用电特性较为复杂。

经过第一阶段 HDBSCAN算法聚类后，共得到

2 829条用户典型负荷曲线。在第二阶段，将每条

用户典型负荷曲线视为单独的个体，使用改进的 K-
means算法进行聚类。首先，采用手肘法来确定第

二阶段 K-means的最佳聚类数目为 12。然后，对数

据进行初步聚类并计算每条曲线到聚类中心的欧

氏距离。设定阈值为平均值加上两倍的标准差，使

用小于阈值的负荷曲线对聚类中心进行更新。最

后，将所有负荷曲线匹配到相应的聚类中心，得到

12种不同的行业典型负荷形态，其中部分行业典型

形态如图 7所示。

由图 7可知，橡胶与塑料制品行业的日负荷曲

线清晰地展示了该行业的电力需求特征。该行业

中的生产设备，如注塑机[27]、挤出机和压延机通常

需要长时间连续运行，该模式使电力需求呈现高稳
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定性和持续性。因此，在场景 1和场景 8中可以观

察到相对较高的负荷水平。相较之下，场景 2的负

荷曲线波动较小，可能是工厂停工或假期中仅保持

少量设备运行的低负荷状态。场景 12的曲线展现

出明显的避峰特性，这体现了部分用户对电价波动

的高度敏感性，企业可能会选择在电价较低的时段

增产以优化运营成本。行业典型负荷形态不仅展

示了企业对电力市场变化的适应策略，也反映了用

户对峰谷电价政策的积极响应，为电网调度部门精

细化管理提供重要依据。 

4.2    行业负荷特征异常辨识方法

根据 2.1节的特征提取方法，提取每个用户典

型负荷形态的用电特征情况，得到每个场景 11维

的用电特征。信息熵衡量的是指标信息量的大小

和不确定性[28]，熵值越大，表示该指标的信息越分

散，不确定性越高；熵值越小，表示该指标的信息越

集中，不确定性越低。根据行业典型负荷场景的划

分结果，计算每个场景负荷特征的平均值，然后使

用熵权法对该场景的重要性进行评估。计算得到

的结果如表 2所示。
  

表 2    场景综合评分
Table 2    Comprehensive scenario score

 

场景 综合评分 场景 综合评分

1 0.597 7 0.474

2 0.282 8 0.468

3 0.809 9 0.288

4 0.549 10 0.270

5 0.303 11 0.299

6 0.240 12 0.400
 

计算结果反映了不同负荷场景在用电特征上

的重要性。高得分场景（如场景 1）显示用户在高峰

负荷时段具有显著的用电特征，而低得分场景（如

场景 2）则对应于低负荷或非关键用电行为。计算

结果表明，基于熵权法的综合评价方法可以客观评

估不同负荷场景的相对重要性，并为后续的行业特

征异常识别提供可靠依据。

为避免特征冗余问题，使用 PCA对所得特征进

行降维处理，选择前两个能解释大部分特征方差并

保留尽可能多信息的主成分，将其作为 OCSVM模

型的输入。OCSVM通常用于无监督学习场景，这

意味着没有预先标注的正常或异常数据点。在这

种情况下，很难通过传统的监督学习方法（如交叉

验证）来优化参数。文献[29]提出一种无监督的方

法，利用数据点及其 k最近邻之间的距离分布来估

计 OCSVM中超参数的值。该方法对不同类型的

数据具有鲁棒性，与传统方法相比，显著减少了计

算复杂度。在对数据进行 PCA降维处理后，利用

OCSVM对降维后的特征进行拟合，以识别不同行

业场景中的异常行为和模式，并使用式（11）和式

（12）计算用户的异常评分。

以用户 22为例进行异常得分计算。该用户包
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含 6条典型用电负荷曲线，各个变量的计算结果如

表 3所示。对用户每个场景的异常得分相加，得到

该用户的综合异常评分为 0.293。
 
 

表 3    用户 22 各场景异常得分情况
Table 3    Anomaly scores for different

scenarios of user 22
 

用户典型
场景

包含曲
线数量

曲线所
占比例

异常
程度

所属行
业场景

场景
评分

综合
得分

1 52 0.227 0.566 3 0.809 0.104

2 47 0.205 0.464 12 0.400 0.038

3 27 0.118 0.840 5 0.303 0.030

4 8 0.035 1.001 11 0.299 0.010

5 89 0.389 0.953 2 0.282 0.104

6 6 0.026 0.973 2 0.282 0.007
 

图 8展示了场景 5中用户 22和用户 87的典型

负荷特征对比。根据表 3可知，用户 22的典型曲

线 3在场景 5中评分为 0.303，说明在该场景下其负

荷特征与行业典型特征相近。相对而言，用户

87的典型曲线 2在同一场景中的评分为 1.72，显著

高于离群数值 1，表明其在多个特征维度上与行业

典型模式存在显著偏差，图 8中的可视化分析进一

步证实了该现象。
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为证明文中方法的合理性，使用用户单个典型

场景（即用户最典型的用电场景，表明用户在该用

电场景下的负荷曲线最多，对应用户 22的场景 5）
和多个典型场景（即考虑用户全部用电场景，对应

用户 22的场景 1—6）的负荷曲线进行行业特征异

常检测。使用该方法计算所有用户在两种情况下

的异常得分，并按照异常得分从大到小的顺序进行

排序，前 100名用户的异常得分情况如图 9所示。

从图 9可以发现，随着用户异常得分排序的后

移，两条曲线的异常得分开始快速减小，并在综合

异常得分接近 0.8时趋于平缓。这表明大多数用户

的异常得分较低，只有少数用户的异常特征比较显

著。只要对异常得分较高的用户进行就地排查，即

可检查出大部分行业特征异常用户[30]。用户在单

场景下的异常得分相对较高，最高得分为 2.858，表
明某些用户在特定场景下的异常行为非常显著，而

在多场景下的得分相对较低，最高得分为 1.749。
这是因为多场景方法综合考虑了用户在多个场景

下的行为特征，使得异常得分更加综合和全面。

为核实其中行业档案错误的情况，分别对

考虑单场景的 OCSVM（single-scenario OCSVM, SS-
OCSVM）和考虑多场景的 OCSVM（multi-scenario
OCSVM, MS-OCSVM）两种情况下异常得分大于

0.81的用户进行就地排查，排查结果见表 4和表 5。
 
 

表 4    单场景异常排查结果（按单场景得分排序）
Table 4    Single-scenario anomaly investigation results

(sorted by single-scenario score)
 

用户编号
单场景异
常得分

多场景异
常得分

是否为档案
异常用户

a 2.858 0.568 否

b 2.472 1.103 是

c 2.436 0.549 否

d 2.324 1.749 是

e 2.089 1.385 否

f 1.903 1.511 是

g 1.656 1.277 是

h 1.517 1.489 否

i 1.394 0.397 否

j 1.241 0.694 否

k 1.238 1.205 是

l 1.237 1.123 是

m 1.143 1.046 是

n 1.084 0.414 是
 

从排查结果可以发现，单场景方法在特定场景

下识别异常用户的能力较强，但可能会因为忽略其

他场景的信息而导致误报。例如，用户 a在单场景
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评估中异常得分为 2.858，但在多场景评估中得分

仅为 0.568，其整体行为并未表现出异常，所以未被

识别为特征异常用户，排查结果也证明了该用户并

不是档案异常用户。同时，大部分使用单场景方法

识别出的真实异常用户，也能通过多场景方法进行

准确识别。具体来说，表 5中被单场景方法识别为

档案异常用户的 8个用户中，有 7个用户在多场景

评分中得到相对较高的异常评分，并被识别为特征

异常用户。

在不考虑各场景权重及用户负荷曲线的具体

异常程度的前提下，若仅利用 OCSVM模型对用户

的每个场景负荷特征进行研判，对所有场景都被标

记为异常的 16个用户进行排查，得到的结果如表 6
所示。
 
 

表 6    基于不同方法的 OCSVM 模型精确率对比
Table 6    Comparison of precision rates for OCSVM

models based on different methods
 

检测方法
排查用户

数量
实际异常
用户数量

精确率/%

OCSVM 16 5 31.25

SS-OCSVM 14 8 57.14

MS-OCSVM 9 7 77.78
 

表 6中显示，MS-OCSVM方法的精确率高达

77.78%，显著优于其他两种方法。较高的精确率证

明了 MS-OCSVM在整合多场景信息后，能够显著

降低误报率，并有效地识别出其他单场景方法可能

遗漏的异常，进一步验证了该方法在实际应用中的

有效性和可靠性。 

5    结语

为解决电网用户行业分类不准并且变动频繁

导致台账信息更新不及时的问题，文中提出一种基

于 HDBSCAN和 K-means的两阶段聚类方法，构建

橡胶和塑料制品行业的典型负荷形态，并通过考虑

多维场景和 OCSVM算法实现用户特征异常的智

能辨识和定位，提高了检测的准确性并减少了误判

概率，可以极大地减轻运维人员的人力成本和时间

成本，为运维人员快速筛查特征异常用户提供有效

支撑。

下一步的研究重点将集中在研究更多不同行

业用户特征异常检测，并研究自适应方法在行业特

征异常检测中的应用，进一步提高行业特征异常检

测的效率和精度。
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OCSVM-based method for identifying abnormal load characteristics in industry
CHEN Guangyu1,  YANG Guang1,  SHI Weijin2,  CAI Xincan2,  CHEN Wanqing2,  LIU Hao1

(1.  School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China; 2.  Quanzhou Power

Supply Company of State Grid Fujian Electric Power Co., Ltd., Quanzhou 362000, China)

Abstract： To  address  the  challenge  faced  by  power  grid  companies  in  accurately  detecting  changes  in  user  industry

information, which has been complicated by the increasing variability of industry characteristics in recent years, a data-driven

approach for identifying anomalies in load characteristics is proposed. Initially, a two-stage methodology for developing typical

load  patterns  for  various  industries  is  presented.  The  hierarchical  density-based  spatial  clustering  of  applications  with  noise

(HDBSCAN) technique is utilized to extract typical daily load curves for users under different scenarios. Subsequently, these

extracted  daily  load  curves  are  clustered  using  an  improved  K-means  algorithm  to  establish  typical  load  patterns  for  the

respective industries. In the second phase, a multidimensional intelligent diagnostic method for load characteristic anomalies is

introduced.  User  load  characteristics  are  constructed,  and  the  entropy  weight  method  is  employed  to  evaluate  the  relative

significance  of  typical  industry  scenarios.  The  one-class  support  vector  machine  (OCSVM)  algorithm  is  then  utilized  to

quantify the degree of anomaly present in user load characteristics across each scenario.  Comprehensive suspicion scores are

calculated and ranked to accurately identify users exhibiting abnormal load characteristics.  The effectiveness of the proposed

method is validated through the analysis of actual user data from a specific region. The results demonstrate that the method is

both  feasible  and  practical  for  constructing  typical  industry  load  scenarios  and  for  the  identification  of  load  characteristic

anomalies.

Keywords：data-driven;  load characteristic  anomalies; hierarchical  density-based spatial  clustering of  applications  with  noise
(HDBSCAN)-improved K-means algorithm; multi-dimensional scenario analysis; one-class support vector machine (OCSVM);

comprehensive suspicion score
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