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基于在线顺序极限学习机模型的锂离子电池健康状况预测
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摘　要：针对锂电池健康状况预测精度不高以及模型不能实现在线更新的问题，文中提出基于在线顺序极限学习机

（online sequential extreme learning machine, OSELM）模型的锂电池健康状况预测方法。首先，从锂离子电池历史充

放电数据中获取与电池容量相关度高的健康因子，通过鹅算法优化 OSELM（记作 GOOSE-OSELM）提高模型的预

测精度，同时引入柯西逆累积分布算子和正切飞行算子对鹅算法进行改进，提高模型全局优化能力和收敛速度，形

成计算速度快且能在线更新的算法模型。然后，将改进鹅算法优化 OSELM（记作 IGOOSE-OSELM）的预测结果与

GOOSE-OSELM、OSELM、反向传播（back propagation, BP）神经网络、鲸鱼算法优化最小二乘支持向量机（whale
optimization algorithm-least squares support vector machine, WOA-LSSVM）进行对比，结果显示，在 3 个电池数据集中

IGOOSE-OSELM 的拟合优度值均超 0.997，均方根误差都小于 0.004 5。最后，利用牛津电池数据集和 NASA 电池

数据集对模型的泛化能力加以验证，结果表明 IGOOSE-OSELM 模型能够准确预测电池的健康状况，模型具有较高

的鲁棒性和适应性。
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0    引言

随着“双碳”目标的提出，以新能源为主体的新

型电力系统建设逐步推进。新型电力系统需要具

备高效、经济的能量存储技术，其中电化学储能技

术发展速度最快、应用最广泛[1-4]。锂离子电池自

开发和商业化以来，凭借其循环寿命长、能量密度

高、充电速度快等优点，在电化学储能领域迅速占

据领先地位[5-7]。然而，随着锂离子电池充放电次数

增加及环境工况影响，电池会逐渐老化，导致内部

化学反应不稳定，进而引起电池温度升高。在老化

严重时，甚至可能引发热失控，造成严重危害。因

此，及时了解锂离子电池的老化程度，预测其使用

寿命，对于维护电力系统储能装备具有重要意义。

电池健康状态（state of health, SOH）是表征电池

老化程度的重要指标，其定义为电池当前最大容量

与额定容量的比值[8-10]，通过对 SOH进行预测可预

知电池的使用寿命。目前对于 SOH的预测可分为

模型法和数据驱动法[11]，模型法一般从电化学反应

的角度描述电池的衰退过程，通过构建电化学模

型、电化学阻抗模型或等效电路模型解释电池内部

复杂的化学反应过程。文献[12]提出一种基于伪

二模型和降解模型耦合的 SOH和老化参数在线估

计方法。文献[13]提出一种极简的电化学模型，用

于描述电池内部的锂含量，并将锂损失导致的容量

衰减与 SOH关联起来。模型法在电池建模准确的

前提下可以准确估计电池的 SOH，但这类方法存在

电池参数复杂度较高的问题，模型参数受外部环境

的影响，鲁棒性较差。

数据驱动法通过测量电池使用中的电压、电

流、温度等参数，提取与 SOH变化相关度高的特征

参量，利用高特征数据集实现对 SOH的估计，相比

于模型法，其不需要研究电池具体的反应机理，具

有较高的适应性和鲁棒性。文献[14]利用差分进

化灰狼优化器对长短期记忆（long short-term memory,
LSTM）网络模型中的超参数进行优化，实现对电池

SOH的预测。文献[15]采用灰色关联度对健康因

子进行排序，确定 SOH的主要健康特征，构建灰狼

优化算法-最小二乘支持向量机（gray wolf optimi-
zation-least  squares  support  vector  machine,  GWO-
LSSVM）对电池数据集进行预测。文献[16]提出一

种基于粒子群优化多核高斯过程回归模型的锂离

子电池 SOH预测框架。文献[17]提出基于鲸鱼优

化的双向长短期记忆（bidirectional  long short-term
memory, BiLSTM）网络的电池 SOH预测模型。以上

算法虽均实现了对电池 SOH的预测，但存在模型

计算时间长、预测精度不高的问题。而电池的健康

状况易受充电环境的影响，不经过实时快速更新难

以保证电池 SOH定位的精确度。基于以上问题，

文中引入在线顺序极限学习机（online  sequential
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extreme learning machine, OSELM）算法对锂离子电

池的 SOH进行研究。

极限学习机（extreme  learning  machine,  ELM）

是一种批处理算法，其克服了传统神经网络和深度

学习算法参数多、学习速度慢的缺点，具有学习速

度快、泛化能力强等优点[18-20]。OSELM为 ELM的

变体，继承了 ELM计算速度快、模型简单的优点，

同时还解决了 ELM不能实现模型在线更新的问

题，但该方法仍存在模型初始化参数与神经元之间

的权重对模型预测精度影响较大的问题[21]。对此，

文中提出基于 OSELM模型预测电池 SOH的方

法。首先，从锂离子电池充放电数据集中提取健康

因 子， 运 用 鹅 算 法 优 化 OSELM（记 作 GOOSE-
OSELM）以提高模型的预测精度；然后，引入柯西逆

累积分布算子和正切飞行算子对算法进行改进，通

过改进的鹅优化算法寻找 OSELM的最佳参数；最

后，利用改进鹅算法优化 OSELM（记作 IGOOSE-
OSELM）对电池数据集进行在线预测，并将预测结

果与 GOOSE-OSELM、 OSELM、 反 向 传 播 （back
propagation, BP）神经网络、鲸鱼算法优化最小二乘

支持向量机（whale optimization algorithm-least squares
support vector machine, WOA-LSSVM）进行对比。结

果显示，文中所提 IGOOSE-OSELM模型预测的拟

合优度均高于 0.997，在不同的电池数据集中均有

较好的鲁棒性和适应性，可以为锂离子电池的健康

预测提供参考。 

1    健康因子筛选与特征选取
 

1.1    模型数据集选择

实验采用的电池数据均来源于 NASA公开的

电池数据集[22]，该数据集详细记录了电池充放电过

程中的电压、电流、温度、容量等参数的变化情

况。文中选取该数据集中的 B0005、B0006、B0007
号电池作为实验对象，锂电池容量均为 2 A·h，环境

温度为 24 ℃。充放电过程如下：充电过程，恒流阶

段电池以 1.5 A电流充电，当电压达到 4.2 V时进入

恒压阶段，当充电电流小于 20 mA时，充电停止；放

电过程，电池以 2 A电流放电，直到达到各自的截

止电压 2.7、2.5、2.2 V时，电池停止放电。电池充放电

工况参数如表 1所示。电池的容量衰减曲线如图 1
所示。

根据图 1可知，电池容量呈非线性衰减，且在

衰减过程中存在周期性的上升，这是因为电池存在

容量自恢复的过程。在充放电过程中，锂离子会在

正极和负极之间迁移，其中一些锂离子被固定在电

极表面或者穿过电解质膜而无法再次参与电池反

应。当电池静置时，这些固定的锂离子有可能被重

新释放出来，参与电池的充放电反应，从而导致下

一个充放电周期的容量增加。 

1.2    特征选取与相关性分析

电池容量和内阻是衡量其 SOH的重要依据，

但是在实际情况下难以直接获取。相比之下，在电

池充放电过程中，很容易在线测量获取电流、电

压、温度等参数，故可将电压、电流、温度的变化情

况作为特征信号[23]。

以 B0005号电池数据为例，电池循环中电压、

温度曲线变化如图 2所示。随着电池循环次数的

增加，恒流充电阶段电压上升时长增加，充放电阶

段温度达到峰值时间以及放电阶段电压达到最低

点时间均减小，因此将恒流阶段充电电压小于 4.2 V
的电压平均值记为 HI1；放电阶段温度达到峰值时

间记为 HI2；电压从 4.2 V降到截止电压时的放电

电压平均值记为 HI3，该段时间记为 HI4[24]。
斯皮尔曼相关系数（Spearman）可以反映两个随

机变量的变化趋势方向和强度之间的关联，适用于

变量不满足正态分布的条件。将上述特征与电池

的容量用 Spearman做快速相关性分析，相关系数如

表 2所示。从表 2可知，不同数据集下，HI1、HI2、
HI3、HI4健康因子的相关系数绝对值均超 0.9，说
明以上健康因子与锂离子电池容量有很强的相关

性。这些相关性强的健康因子构成新的数据集。 

 

表 1    电池充放电工况参数

Table 1    Battery charging and discharging
condition parameters

 

电池编号 温度/℃ 放电截止
电压/V

放电
电流/A

充电
电流/A

B0005 24 2.7 2 1.5

B0006 24 2.5 2 1.5

B0007 24 2.2 2 1.5
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图 1    电池容量衰减曲线

Fig.1    Battery capacity decay curves
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2    模型建立
 

2.1    OSELM 模型

ELM是南洋理工大学黄广斌提出的一种快速

学习算法[25]，在确保学习精度的前提下比传统的学

习算法速度更快，泛化能力更强。但 ELM是一种

批处理算法，其在训练阶段需要获得所有的训练数

据，经过训练后再测试，而不是随着新数据的输入

对模型进行在线更新。OSELM为 ELM的变体，在

ELM模型的基础上引入在线机制，继承了 ELM训

练速度快、泛化能力强的优点，且可以随新数据的

输入不断更新模型，无须重新训练模型。OSELM
的网络结构如图 3所示。
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图 3   OSELM 的网络结构
Fig.3    Network structure of OSELM
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图 3中，y为模型电池容量的输出，其由隐含层

输出和隐含层与输出层间的权重 决定，隐含层的

输出由激活函数 决定， 为输入层到隐

含层之间的输入权重， 为第 s个隐含层单元的阈

值， 为电池健康因子 HI1—HI4数据集的输入。

、 由随机数生成，因此需要求出权重 。

βm

OSELM模型的学习过程可分为两部分 [26-27]：

（1） 初始阶段，通过少量样本获得初始输出权重；

（2） 在线学习阶段，由样本组成的数据块被放入网

络并更新输出权重 。 

2.2    鹅优化算法

鹅优化算法是 Rebwar  Khalid  Hamad和 Tarik
A.Rashid在 2024年提出的一种新的元启发式算

法[28]，灵感来源于鹅在休息和觅食过程中的行为。

该算法模拟鹅行为方式计算鹅在搜索空间中的最

优位置，具体可分为以下两阶段。

r r≥0.5

q（q ∈ (0,1)）

为平衡开发阶段和探索阶段，根据迭代次数均

匀分布相位，使用随机变量 ，当 进入开发阶

段，引入变量 ，该变量的作用是判断哪

个方程有效；反之进入探索阶段。

Wi≥12

q > 0.2

S

Gi A

（1） 开发阶段。如果第 i个石头重量 且

变量 ，要唤醒种群中的个体鹅，需要找到一

个最佳位置，位置由石头下落速度 加上鹅的距离

乘以时间均值 的平方表示。 

Li+1 = S +GiA2 （1）

Li+1 i+1式中： 为第 个鹅位置。

Wi < 12 q≤0.2

S Oi Wi

如果石头重量 且变量 ，石头下落

速度 可由物体落地时间 乘以石头重量 除以
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图 2    循环中电压、温度的变化曲线

Fig.2    Variation curves of voltage and
temperature during cycling

 

表 2    各健康因子与电池容量的相关系数

Table 2    Correlation coefficients between each
health factor and battery capacity

 

电池编号
Spearman

HI1 HI2 HI3 HI4

B0005 −0.971 5 0.999 5 0.982 2 0.999 7

B0006 −0.992 2 0.999 8 0.995 7 0.999 9

B0007 −0.987 5 0.998 6 0.976 9 0.999 0
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重力加速度表示，如式（2）所示，声音传播距离和鹅

的距离 不变。 

S = Oi
Wi

9.81
（2）

Wi q

鹅的新位置如式（3）所示，具体由石头重量

和变量 决定。 

Li+1 = S GiA2q （3）

r < 0.5

M

（2） 探索阶段。如果种群中的鹅没有靠石头提

醒而是随机醒来，其中一只鹅醒来就开始尖叫以保

护种群中的所有个体。如果随机变量 ，则进

入探索阶段。此时检查最小时间 是否大于总时

间，若是，则将最小时间赋值给总时间。

α ∈ [0，2]随机变量 会随着循环中的每次迭代而

显著降低，用以改进搜索空间中的新位置。 

α = 2−n
¡

Nmax

2
（4）

n Nmax式中： 为迭代次数； 为最大可迭代次数。

M α rand(N(1,d))

为将搜索过程引导至最有可能产生最优解的

方向，计算 和 至关重要。通过使用 ，

确保鹅随机地探索搜索空间中的其他个体，鹅的新

位置可以表示为： 

Li+1 = rand(N(1,d))× (Mα)+C （5）

rand(N(1,d))

d C

式中： 为取值范围在 1~d且服从标准正

态分布的随机数， 为维度数量； 为搜索区域中的

最佳位置。 

2.3    鹅优化算法改进

鹅优化算法具备强大的全局搜索和局部搜索

能力[28]，能够在复杂的环境中找到最优解，但在局

部开发阶段容易陷入局部最优解，使得算法可能无

法找到全局最优解。为平衡探索阶段和开发阶段，

跳出局部搜索的困境，加快算法的收敛速度，增强

其鲁棒性，文中从柯西逆累积分布算子和正切飞行

算子两方面对其进行改进。

（1） 柯西逆累积分布算子。柯西分布也叫柯

西—洛伦兹分布，其概率密度函数的形状类似于钟

形曲线，但尾部延伸得非常远，在某些情况下的积

分不收敛，所以柯西分布的数学期望、方差和高阶

矩均不存在。当数据集中存在极端值或离群点时，

柯西分布对于这类数据具有较好的拟合效果。其

概率密度函数可以定义为： 

f (x;a,b) =
1
π
× b

(x−a)2+b2
（6）

a b

x

式中： 为定义分布峰值位置的位置参数； 为比例

参数，用以定义最大值的一半宽度； 为随机变量的

取值。

柯西分布的累计分布函数为： 

F(x;a,b) =
w x

−∞

1
π
× b

(x−a)2+b2
=

1
2
+

1
π

arctan
( x−a

b

)
（7）

柯西分布的累计分布函数的反函数可以定

义为： 

F−1(p;a,b) = a+b tan(π(p−0.5)) （8）

p = rand(1,d) a = 0

b = 0.01

式中：概率值 。 时反函数与标准

柯西分布的中心位置一致； ，这种赋值使得

算法中的搜索过程不会过于激进，从而跳出新算法

的设计领域。

（2） 正切飞行算子。步长对算法的优化极为重

要。对于步长的取值，大的值有利于探索，小的值

有利于开发，而切线函数有助于有效地探索搜索空

间。正切飞行算子与柯西相似[29]，函数可以定义为：   f = tan
(
γ
π
2

)
γ = rand(1,d)

（9）

γ d式中： 为 1~ 之间的随机值。

r≥0.5

（3） 算法改进。改进策略主要对鹅优化算法的

开发阶段进行更改。当随机数 时，算法进入

开发阶段。柯西逆累积分布和正切飞行都属于切

线函数，其步长较小，步数较多，通过柯西逆累积分

布算子细化守卫鹅和种群中其他鹅的距离，减小整

体步长，以更快达到最佳位置。式（1）可改进为式

（10），数学模型描述如下： 

Li+1 = S +GiA20.01tan(π(p−0.5)) （10）

正切飞行具有平衡开发和探索的能力。以正

切飞行算子为比例因子控制鹅位置更新的步长，增

强鹅优化算法的收敛能力，提高算法的精度和收敛

速度，以避免陷入局部最优。式（3）可改进为式

（11），具体数学模型描述如下： 

Li+1 = S GiA2q tan
(
γ
π
2

)
（11）

IGOOSE-OSELM模型的具体步骤如下。

（1） 根据锂电池充放数据，提取健康因子，并进

行相关性分析。选取相关性强的健康因子，构成新

的数据集。将数据分成训练集和测试集，对两个数

据集进行归一化。

（2） 初始化鹅优化算法的相关参数，指定随机

变量，寻找最佳适合度和最佳位置。

（3） 运用柯西逆累积分布算子和正切飞行算子

策略更新鹅在搜索空间中的位置，记录最佳位置和

最佳适合度。

（4） 判断迭代次数是否达到最大迭代次数，

如果成立，输出最佳位置和最佳适合度，否则继续
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迭代。

（5） 将优化算法的结果代入 OSELM模型，得

到预测模型，用测试集对模型进行验证，完成锂电池

的寿命预测。 

3    预测结果与分析
 

3.1    评价指标

R2

为定量分析预测模型的精确度，文中采用 4个

评价指标：拟合优度 、平均绝对百分比误差 P、均

方根误差 S、平均绝对偏差 A。计算如下： 

R2 = 1−
J∑

j=1

(y j− ŷ j)2

/
J∑

j=1

(y j− y j)
2 （12）

 

P =
1
J

J∑
j=1

y j− ŷ j

y j
（13）

 

S =

Œ
J∑

j=1

(y j− ŷ j)2

J
（14）

 

A =

J∑
j=1

∣∣y j− ŷ j

∣∣
J

（15）

y j j ŷ j j

y j j

R2

式中： 为第 个电池的实际容量； 为第 个电池的

预测容量； 为第 个电池实际容量的平均数；J为
样本个数。通常来说， 越接近于 1，模型对数据的

拟合程度越好[30]；P、S、A值越小，说明实际值与预

测值之差越接近 0，也就意味着模型的预测精度

越高。 

3.2    模型对比

R2

R2

为验证文中所提 IGOOSE-OELEM模型的稳定

性和准确性，对处理后的 B0005、B0006、B0007进

行 锂 电 池 的 寿 命 预 测， 并 与 GOOSE-OSELM、

OSELM、BP神经网络以及 WOA-LSSVM进行对

比。上述模型均采用同一种健康因子的选取办法，

取数据集前 50% 的数据用于训练模型，后 50% 的

数据用于预测验证。B0005、B0006、B0007的 SOH
预测结果分别如图 4、图 5、图 6所示。结果表明，

IGOOSE-OELEM模型的拟合效果比其他模型的

拟合效果要好，预测值更加接近实际值，拟合优度

均高于 0.997。以 B0005号数据集为例，IGOOSE-
OSELM模型的拟合优度 较 GOOSE-OSELM模

型提高了 3.3%，较 OSELM模型提高了 5.78%，说明

在预测性能方面， IGOOSE-OESELM  >  GOOSE-
OESELM > OSELM。同时，IGOOSE-OSELM模型

也优于常用的 BP神经网络模型和 WOA-LSSVM
模型。 算法的适应度值越小意味着该算法在解决问
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图 4    B0005 号电池 SOH 预测结果

Fig.4    SOH prediction results of B0005 battery
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图 5    B0006 号电池 SOH 预测结果

Fig.5    SOH prediction results of B0006 battery
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题时的性能越好。在优化算法中，适应度值通常表

示算法得到的解与最优解之间的差距，因此其值越

小表示算法得到的解越接近最优解。图 7为 3种

算法收敛速度的比较，可以看出改进鹅优化算法较

其他算法能最快收敛到一个最优解，说明柯西逆累

积飞行算子和正切飞行算子能增强鹅优化算法的

收敛能力，提高其精度。
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图 7   算法收敛速度比较
Fig.7    Comparison of algorithm convergence rate

 

表 3为 3种锂电池 SOH的评价指标，各个评价

指标的值越小，预测结果越精确。由表 3可知，

IGOOSE-OSELM模型的预测误差明显优于其他算

法，均方根误差均低于 0.004 5。以 B0006号电池数

据集为例，IGOOSE-OSELM模型的平均绝对百分

比误差比 GOOSE-OSELM模型减少 85.86%， 均方

根误差仅为 GOOSE-OSELM的 14.17%。总体上来

看，  IGOOSE -OSELM模型的预测精度最优 ，而

BP模型表现较差。从时间上看，IGOOSE-OSELM
模型用时少于 GOOSE-OSELM，说明改进策略对算

法寻优的精确度和速度均有提升的作用；而 OSELM
和WOA-LSSVM模型虽然预测用时少，但预测精

度不高。总体上看，各种算法的用时差别不大。 

3.3    模型泛化能力验证

为验证模型的泛化能力，分别选取 NASA的

B0053号电池数据集和牛津电池老化数据集中的

 

0 20 40 60 80 100 120 140 160 180

1.4

1.5

1.6

1.7

1.8

1.9
容
量

/(
A

·h
)

循环次数

实际值
OSELM
GOOSE-OSELM
IGOOSE-OSELM
BP
WOA-LSSVM

(a) B0007号电池预测结果

0.90 0.93 0.96

0.99 1.00

IGOOSE-

OSELM

GOOSE-OSELM

OSELM

BP

WOA-LSSVM

R
2

(b) 拟合优度对比

图 6    B0007 号电池 SOH 预测结果

Fig.6    SOH prediction results of B0007 battery

 

表 3    各算法的评价指标对比

Table 3    Evaluation indexes comparison of each algorithm
 

算法 电池编号 平均绝对百分比误差 均方根误差 平均绝对偏差 时间/s

IGOOSE-OSELM

B0005 0.040 7 0.000 735 0.000 570 1.385 4

B0006 0.179 8 0.003 094 0.002 351 1.030 7

B0007 0.241 2 0.004 404 0.003 532 1.529 7

GOOSE-OSELM

B0005 2.628 6 0.045 662 0.036 938 2.113 0

B0006 1.271 6 0.021 836 0.016 660 1.140 1

B0007 2.022 0 0.037 294 0.030 471 1.741 8

OSELM

B0005 4.615 1 0.078 088 0.066 883 0.453 0

B0006 3.289 3 0.058 887 0.044 092 0.367 8

B0007 3.408 7 0.059 203 0.052 443 0.479 6

BP

B0005 3.671 2 0.066 694 0.052 451 2.243 3

B0006 4.932 1 0.087 496 0.067 893 2.253 6

B0007 4.022 3 0.077 424 0.062 555 2.212 6

WOA-LSSVM

B0005 4.605 1 0.081 159 0.066 755 0.257 3

B0006 3.251 1 0.055 318 0.043 441 0.255 6

B0007 2.678 4 0.050 324 0.040 784 0.294 3
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Cell1进行验证。对两数据集进行健康因子提取，其

中在 NASA的 B0053号电池数据集中，只有放电阶

段温度达到峰值的时间、放电电压从 4.2 V降到截

止电压 2.0 V的时间这两个健康因子的相关性符合

要求，模型对 B0053号电池数据集的预测结果以及

预测值与实际值的误差曲线如图 8所示。而牛津

电池老化数据集 Cell1中充电温度的时间间隔、平

均充电电压、充电电压的时间间隔和放电电压差

这 4个健康因子的相关性绝对值在 0.8~1.0，模型对

牛津数据集 Cell1的预测结果以及预测值与实际值

的误差曲线如图 9所示。模型均选取数据集的前

50% 作为训练集，后 50% 作为预测数据的验证集。
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Fig.8    Prediction results and error curves

of B0053 battery
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Fig.9    Prediction results and error curves of Oxford Cell1

 

R2

R2

从模型对两种不同数据集的预测表现来看，

B0053号电池数据集的拟合优度 为 0.999 43，牛
津电池老化数据集 Cell1的拟合优度 为 0.999 02，
模型的鲁棒性较强，预测精度也较高，说明模型具

有一定的适用性。若能从足够多的电池样本数据

中提取出与健康状况相关性超过 0.9的健康因子，

则对于不同类型的电池，仅需少量数据即可为其健

康状况的评估提供参考依据。 

4    结论

文中提出一种锂离子电池健康因子提取办法

以及 IGOOSE-OSELM的锂离子电池 SOH模型，相

关结论如下。

（1） 锂离子电池的充放电过程中电压的平均

值、放电过程中的最高温度、充放电时间与电池容

量具有很强的相关性，这些具有强相关的健康因子

构成数据集可以用来预测 SOH的样本数据，减小

数据库的数据量。

（2） 通过引入柯西逆累积分布算子和正切飞行

算子对鹅优化算法进行改进，提高算法的精度和收

敛速度，相比于未优化的鹅优化算法，改进算法适

应度值最小，最接近最优解，同时可避免算法陷入

局部最优。

R2

（3） IGOOSE-OSELM模型的预测精度优于常

见的 BP、LSSVM等锂离子 SOH预测模型，3个数

据集中的 均高于 0.997，均方根误差均低于 0.004 5。
通过不同的数据集进行验证，结果表明该模型的鲁

棒性和适应性较高。
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Lithium-ion battery health prediction based on online
sequential extreme learning machine model

ZHENG Qida1,  ZHAO Su2,  WANG Biao1,  ZHAO Xiaolei2,  WANG Yalin2,  YIN Yi2

(1.  College of Electrical Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China;

2.  Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract：Aiming at the problems that the prediction accuracy of lithium battery health status is not high and the model cannot
be  updated  online,  a  lithium-ion  battery  health  prediction  method  based  on  the  online  sequential  extreme  learning  machine

(OSELM) model  is  proposed.  The  health  factors  with  high  correlation  with  battery  capacity  are  obtained  from the  historical

charge and discharge data of lithiumion batteries, and the OSELM model is optimized by goose algorithm (GOOSE-OSELM)

to improve the  prediction accuracy of  the  model.  At  the  same time,  the  Cauchy inverse  cumulative  distribution operator  and

tangent  flight  operator  are  introduced  to  improve  the  goose  algorithm  to  improve  the  global  optimization  ability  and

convergence speed of the model,  and form an algorithm model with fast  calculation speed and online update.  The prediction

results  of  the improved goose algorithm-optimized OSELM model (IGOOSE-OSELM) are compared with those of GOOSE-

OSELM,  OSELM,  back  propagation  (BP)  neural  networks,  and  whale  optimization  algorithm-least  squares  support  vector

machine (WOA-LSSVM). The results show that the goodness of fit values of IGOOSE-OSELM in the three battery datasets are

above 0.997, and the root mean square error is less than 0.004 5. Finally, the generalization ability of the model is verified by

using  the  Oxford  battery  dataset  and  the  NASA  battery  dataset.  The  results  show  that  the  IGOOSE-OSELM  model  can

accurately predict the health status of the battery, and the model has high robustness and adaptability.

Keywords： battery  state  of  health;  online  sequential  extreme  learning  machine  (OSELM);  goose  optimization  algorithm;

convergence rate; generalization capability; robustness
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