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Fig.1 Battery capacity decay curves
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Fig.2 Variation curves of voltage and
temperature during cycling
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Table 2 Correlation coefficients between each
health factor and battery capacity

4 Spearman
HI1 HI2 HI3 HI4
B0005 —0.9715 09995 09822 0.9997
B0006 —0.9922 09998 09957 0.9999
B0007 —09875 09986 09769 0.9990
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Table 3 Evaluation indexes comparison of each algorithm

ik RS PR AR WOrRIRE PR W)/
B0005 0.040 7 0.000 735 0.000 570 1.3854

IGOOSE-OSELM B0006 0.179 8 0.003 094 0.002 351 1.030 7
B0007 0.2412 0.004 404 0.003 532 1.5297

B0005 2.628 6 0.045 662 0.036 938 2.1130

GOOSE-OSELM B0006 1.271 6 0.021 836 0.016 660 1.140 1
B0007 2.0220 0.037 294 0.030 471 1.741 8

B0005 46151 0.078 088 0.066 883 0.453 0

OSELM B0006 3.2893 0.058 887 0.044 092 0.367 8
B0007 3.408 7 0.059 203 0.052 443 0.479 6

B0005 3.6712 0.066 694 0.052 451 22433

BP B0006 49321 0.087 496 0.067 893 2.2536
B0007 4.0223 0.077 424 0.062 555 22126
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Lithium-ion battery health prediction based on online
sequential extreme learning machine model

ZHENG Qida', ZHAO Su’>, WANG Biao', ZHAO Xiaolei’, WANG Yalin’, YIN Yi’
(1. College of Electrical Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
2. Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract: Aiming at the problems that the prediction accuracy of lithium battery health status is not high and the model cannot
be updated online, a lithium-ion battery health prediction method based on the online sequential extreme learning machine
(OSELM) model is proposed. The health factors with high correlation with battery capacity are obtained from the historical
charge and discharge data of lithiumion batteries, and the OSELM model is optimized by goose algorithm (GOOSE-OSELM)
to improve the prediction accuracy of the model. At the same time, the Cauchy inverse cumulative distribution operator and
tangent flight operator are introduced to improve the goose algorithm to improve the global optimization ability and
convergence speed of the model, and form an algorithm model with fast calculation speed and online update. The prediction
results of the improved goose algorithm-optimized OSELM model (IGOOSE-OSELM) are compared with those of GOOSE-
OSELM, OSELM, back propagation (BP) neural networks, and whale optimization algorithm-least squares support vector
machine (WOA-LSSVM). The results show that the goodness of fit values of IGOOSE-OSELM in the three battery datasets are
above 0.997, and the root mean square error is less than 0.004 5. Finally, the generalization ability of the model is verified by
using the Oxford battery dataset and the NASA battery dataset. The results show that the IGOOSE-OSELM model can
accurately predict the health status of the battery, and the model has high robustness and adaptability.

Keywords: battery state of health; online sequential extreme learning machine (OSELM); goose optimization algorithm;

convergence rate; generalization capability; robustness
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