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Fig.1 Schematic diagram of the new
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Table 1 Operating parameters of the new energy town
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Two-stage robust optimization configuration of comprehensive
energy system for the new energy town

HU Li, CHENG Jing
(Engineering Research Center for Renewable Energy Power Generation and Grid-Connected Control,
Ministry of Education, Xinjiang University, Urumqi 830047, China)

Abstract: A two-stage robust optimization configuration strategy for the new energy town is proposed to address the issue of
insufficient power supply reliability in integrated energy systems due to the fluctuation and intermittency characteristics during
the integration of a high proportion of renewable energy. In the first stage, historical source-load data is utilized to make
preliminary decisions on unit capacity configuration, with the objective of minimizing system configuration costs. In the second
stage, polyhedral uncertainty sets are employed to describe the uncertainties of source-load, aiming to minimize system
operation costs, and power data predictions for the worst-case scenarios are obtained based on the decision outcomes of the first
stage. An uncertainty parameter is then introduced to control the conservativeness of the robust optimization configuration
scheme. The model is solved using the column and constraint generation (C&CG) algorithm, which iteratively determines unit
capacity configuration and converges to the optimal configuration scheme. A case study of the new energy town in Northern
China is conducted, and the results verify the effectiveness and feasibility of the proposed strategy and optimization method,
demonstrating their capability to enhance the power supply reliability and economy of the new energy town.

Keywords: capacity configuration; two-stage robust optimization; dual uncertainty; new energy town; polyhedral uncertainty

set; column and constraint generation (C&CQG) algorithm
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