Two-layer game model for demand response considering fuzzy control of user responsiveness
Author:
Clc Number:

TM734

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In the distribution network,the participation of flexible resources such as distributed new energy and controllable load in demand response has become an important measure of load adjusting in the new power system. How to consider the uncertainty of user responsiveness and balance the interests of multiple participants is very critical. In this paper,the fuzzy control model of user responsiveness is established firstly,and the benefit function model of multi-agent demand response participants such as power supplier,load aggregator and user is given considering the fuzziness of user responsiveness. Furthermore,with the objectives of minimizing the deviation of daily load curve and minimizing the system cost,the upper optimization adopts the optimal demand response scheme of the power supplier. The lower optimization obtains the best task allocation between the power supplier and the load aggregator,so as to establish the two-layer model of multi-agent collaborative demand response of the power supplier,the load aggregator and the user. A solution method based on Stackelberg game theory and k-means clustering algorithm is proposed. Finally,the simulation results of historical data in an area show that the model can effectively screen high-quality demand response resources to suppress load fluctuation under the consideration of user responsiveness and collaborative of multi-agent interests.

    Reference
    [1] 王昀,谢海鹏,孙啸天,等. 计及激励型综合需求响应的电-热综合能源系统日前经济调度[J]. 电工技术学报,2021,36(9):1926-1934. WANG Yun,XIE Haipeng,SUN Xiaotian,et al. Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response[J]. Transactions of China Electrotechnical Society,2021,36(9):1926-1934.
    [2] 王丹,兰宇,贾宏杰,等. 基于弹性温度可调裕度的中央空调集群需求响应双层优化[J]. 电力系统自动化,2018,42(22):118-126,134. WANG Dan,LAN Yu,JIA Hongjie,et al. Double-layer optimization strategy of cluster central air-conditioner demand response based on elastic temperature adjustable margin[J]. Automation of Electric Power Systems,2018,42(22):118-126,134.
    [3] 孙宇军,王岩,王蓓蓓,等. 考虑需求响应不确定性的多时间尺度源荷互动决策方法[J]. 电力系统自动化,2018,42(2):106-113,159. SUN Yujun,WANG Yan,WANG Beibei,et al. Multi-time scale decision method for source-load interaction considering demand response uncertainty[J]. Automation of Electric Power Systems,2018,42(2):106-113,159.
    [4] 洪奕,刘瑜俊,徐青山,等. 基于积分制和分时电价的电动汽车混合型精准需求响应策略[J]. 电力自动化设备,2020,40(11):106-116. HONG Yi,LIU Yujun,XU Qingshan,et al. Hybrid targeted demand response strategy of electric vehicles based on integral system and time-of-use electricity price[J]. Electric Power Automation Equipment,2020,40(11):106-116.
    [5] 徐箭,曹慧秋,唐程辉,等. 基于扩展序列运算的含不确定性需求响应电力系统优化调度[J]. 电力系统自动化,2018,42(13):152-160. XU Jian,CAO Huiqiu,TANG Chenghui,et al. Optimal dispatch of power system considering uncertainty of demand response based on extended sequence operation[J]. Automation of Electric Power Systems,2018,42(13):152-160.
    [6] 李姚旺,苗世洪,刘君瑶,等. 考虑需求响应不确定性的光伏微电网储能系统优化配置[J]. 电力系统保护与控制,2018,46(20):69-77. LI Yaowang,MIAO Shihong,LIU Junyao,et al. Optimal allocation of energy storage system in PV micro grid considering uncertainty of demand response[J]. Power System Protection and Control,2018,46(20):69-77.
    [7] 闫梦阳,李华强,王俊翔,等. 计及综合需求响应不确定性的园区综合能源系统优化运行模型[J]. 电力系统保护与控制,2022,50(2):163-175. YAN Mengyang,LI Huaqiang,WANG Junxiang,et al. Optimal operation model of a park integrated energy system considering uncertainty of integrated demand response[J]. Power System Protection and Control,2022,50(2):163-175.
    [8] 杨力俊,潘伟,田闻旭. 计及需求响应和风光不确定性的微电网多目标优化模型[J]. 电力需求侧管理,2022,24(3):1-8. YANG Lijun,PAN Wei,TIAN Wenxu. Multi-objective optimization model of microgrid considering demand response and uncertainty of wind power and photovoltaic[J]. Power Demand Side Management,2022,24(3):1-8.
    [9] 杨苹,曾凯林,余雁琳,等. 电能量市场下负荷聚合商参与负荷削减投标策略[J]. 电力工程技术,2022,41(1):2-10. YANG Ping,ZENG Kailin,YU Yanlin,et al. Strategy of load aggregator participating in load curtailment bidding under power market[J]. Electric Power Engineering Technology,2022,41(1):2-10.
    [10] SAMADI P,MOHSENIAN-RAD H,WONG V W S,et al. Real-time pricing for demand response based on stochastic approximation[J]. IEEE Transactions on Smart Grid,2014,5(2):789-798.
    [11] 华亮亮,黄伟,葛良军,等. 计及需求响应的主动配电网双层优化调度模型[J]. 电力建设,2018,39(9):112-119. HUA Liangliang,HUANG Wei,GE Liangjun,et al. Bi-level optimal dispatch model of active distribution network with demand response[J]. Electric Power Construction,2018,39(9):112-119.
    [12] HOSSEINI IMANI M,ZALZAR S,MOSAVI A,et al. Strategic behavior of retailers for risk reduction and profit increment via distributed generators and demand response programs[J]. Energies,2018,11(6):1602.
    [13] 贺帅佳,高红均,刘俊勇,等. 计及需求响应柔性调节的分布鲁棒DG优化配置[J]. 中国电机工程学报,2019,39(8):2253-2264. HE Shuaijia,GAO Hongjun,LIU Junyong,et al. Distributionally robust optimal DG allocation model considering flexible adjustment of demand response[J]. Proceedings of the CSEE,2019,39(8):2253-2264.
    [14] 王均,黄琦. 基于优惠券激励的需求响应双层优化机制[J]. 电力系统保护与控制,2019,47(1):108-114. WANG Jun,HUANG Qi. Coupon incentives based customers voluntary demand response program via bilevel optimization mechanism[J]. Power System Protection and Control,2019,47(1):108-114.
    [15] 郝勇生,王培红,高赐威,等. 基于大用户能效的电网需求响应机制[J]. 电力自动化设备,2019,39(4):44-49. HAO Yongsheng,WANG Peihong,GAO Ciwei,et al. Demand response mechanism of power grid based on energy efficiency of large user[J]. Electric Power Automation Equipment,2019,39(4):44-49.
    [16] 陈冠廷,张利,刘宁宁,等. 基于区块链的面向居民用户需求响应交易机制[J]. 电力自动化设备,2020,40(8):9-17. CHEN Guanting,ZHANG Li,LIU Ningning,et al. Blockchain-based transaction mechanism for residential users demand response[J]. Electric Power Automation Equipment,2020,40(8):9-17.
    [17] 刘天琪,卢俊,何川,等. 考虑联合热电需求响应与高比例新能源消纳的多能源园区日前经济调度[J]. 电力自动化设备,2019,39(8):261-268. LIU Tianqi,LU Jun,HE Chuan,et al. Day-ahead economic dispatch of multi-energy parks considering integrated thermo-electric demand response and high penetration of renewable energy[J]. Electric Power Automation Equipment,2019,39(8):261-268.
    [18] 林国营,卢世祥,郭昆健,等. 基于主从博弈的电网公司需求响应补贴定价机制[J]. 电力系统自动化,2020,44(10):59-67. LIN Guoying,LU Shixiang,GUO Kunjian,et al. Stackelberg game based incentive pricing mechanism of demand response for power grid corporations[J]. Automation of Electric Power Systems,2020,44(10):59-67.
    [19] 涂京,周明,李庚银,等. 面向居民需求响应的售电公司势博弈分布式优化策略[J]. 中国电机工程学报,2020,40(2):400-411. TU Jing,ZHOU Ming,LI Gengyin,et al. A potential game based distributed optimization strategy for the electricity retailer considering residential demand response[J]. Proceedings of the CSEE,2020,40(2):400-411.
    [20] 代业明,高岩,高红伟,等. 智能住宅小区的需求响应主从博弈模型[J]. 电力系统自动化,2017,41(15):88-94. DAI Yeming,GAO Yan,GAO Hongwei,et al. Leader-follower game model for demand response in smart residential grid[J]. Automation of Electric Power Systems,2017,41(15):88-94.
    [21] WEI W,LIU F,MEI S W. Energy pricing and dispatch for smart grid retailers under demand response and market price uncertainty[J]. IEEE Transactions on Smart Grid,2015,6(3):1364-1374.
    [22] 范添圆,王海云,王维庆,等. 计及主/被动需求响应下基于合作博弈的微网-配电网协调优化调度[J]. 电网技术,2022,46(2):453-463. FAN Tianyuan,WANG Haiyun,WANG Weiqing,et al. Coordinated optimization scheduling of microgrid and distribution network based on cooperative game considering active/passive demand response[J]. Power System Technology,2022,46(2):453-463.
    [23] 王萧博,黄文焘,邰能灵,等. 一种源-荷-储协同的电热微网联络线功率平滑策略[J]. 电工技术学报,2020,35(13):2817-2829. WANG Xiaobo,HUANG Wentao,TAI Nengling,et al. A Tie-line power smoothing strategy for microgrid with heat and power system using source-load-storage coordination control[J]. Transactions of China Electrotechnical Society,2020,35(13):2817-2829.
    [24] 屠聪为,曹军,于东立,等. 基于空调负荷的虚拟储能参与调频的控制策略[J]. 电力需求侧管理,2019,21(1):16-21. TU Congwei,CAO Jun,YU Dongli,et al. Control strategy of virtual energy storage system participating in frequency modulation based on air conditioning loads[J]. Power Demand Side Management,2019,21(1):16-21.
    [25] 夏成文,许凯帅,鲍玉昆,等. 基于单值聚类分析的区域居民概率负荷预测研究[J]. 电力信息与通信技术,2021,19(1):1-10. XIA Chengwen,XU Kaishuai,BAO Yukun,et al. Research on probabilistic load forecasting for regional residential users based on single value cluster analysis[J]. Electric Power Information and Communication Technology,2021,19(1):1-10.
    [26] 李晅,马瑞,罗阳. 基于Stackelberg博弈的微网价格型需求响应及供电定价优化[J]. 电力系统保护与控制,2017,45(5):88-95. LI Xuan,MA Rui,LUO Yang. Price-based demand response of micro-grid and optimal pricing strategy based on Stackelberg game[J]. Power System Protection and Control,2017,45(5):88-95.
    [27] 李强,朱丹丹,黄地,等. 虚拟电厂运营商与电动汽车用户的主从博弈定价策略[J]. 电力工程技术,2022,41(4):183-191. LI Qiang,ZHU Dandan,HUANG Di,et al. Stackelberg game pricing strategy between virtual power plant operators and electric vehicle users[J]. Electric Power Engineering Technology,2022,41(4):183-191.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:669
  • PDF: 1444
  • HTML: 2062
  • Cited by: 0
History
  • Received:June 27,2022
  • Revised:September 19,2022
  • Adopted:September 06,2022
  • Online: November 24,2022
  • Published: November 28,2022
Article QR Code