Summary of research on improving the flexibility of new power systems with distributed resources
Author:
Clc Number:

TM933

  • Article
  • | |
  • Metrics
  • |
  • Reference [152]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    With the continuous advancement of new power system construction,the impact of uncertainty is becoming increasingly prominent. Consequently,it is urgent to enhance the flexibility of new power systems to respond to fluctuations in source load power and ensure the safe and stable operation of the system. To this end,this paper reviews methods for improving the flexibility of new power systems considering distributed resources. Firstly,based on the inherent characteristics of the new power system,the challenges and technical bottlenecks in improving the flexibility of the new power system are analyzed. Secondly,following the historical-current-future timeline,this paper summarizes the flexibility improvement paths of the new power system from three perspectives:flexibility quantification evaluation,flexibility optimization scheduling,and flexibility configuration planning. Finally,the key challenges in enhancing the flexibility of new power systems are summarized from the three aforementioned aspects.

    Reference
    [1] 肖定垚,王承民,曾平良,等. 电力系统灵活性及其评价综述[J]. 电网技术,2014,38(6):1569-1576.
    XIAO Dingyao,WANG Chengmin,ZENG Pingliang,et al. A survey on power system flexibility and its evaluations[J]. Power System Technology,2014,38(6):1569-1576.
    [2] 刘瑞丰,陈天恩,王睿,等. 构建清洁低碳发展的电力容量和灵活调节服务市场[J]. 中国电力企业管理,2019(28):36-40.
    LIU Ruifeng,CHEN Tian'en,WANG Rui,et al. Building a clean and low-carbon development power capacity and flexible regulation service market[J]. China Power Enterprise Management,2019(28):36-40.
    [3] 潘尔生,田雪沁,徐彤,等. 火电灵活性改造的现状、关键问题与发展前景[J]. 电力建设,2020,41(9):58-68.
    PAN Ersheng,TIAN Xueqin,XU Tong,et al. Status,critical problems and prospects of flexibility retrofit of thermal power in China[J]. Electric Power Construction,2020,41(9):58-68.
    [4] 邱玥,陆帅,陆海,等. 综合能源系统灵活性:基本内涵、数学模型与研究框架[J]. 电力系统自动化,2022,46(17):16-43.
    QIU Yue,LU Shuai,LU Hai,et al. Flexibility of integrated energy system:basic connotation,mathematical model and research framework[J]. Automation of Electric Power Systems,2022,46(17):16-43.
    [5] 窦鹏冲. 微网中分布式电源的协调控制方法研究[D]. 北京:华北电力大学,2015.
    DOU Pengchong. Research on coordinated control method of distributed resources in microgrid[D]. Beijing:North China Electric Power University,2015.
    [6] 陈心宜,胡秦然,石庆鑫,等. 新型电力系统居民分布式资源管理综述[J]. 电力系统自动化,2024,48(5):157-175.
    CHEN Xinyi,HU Qinran,SHI Qingxin,et al. Review on residential distributed energy resource management in new power system[J]. Automation of Electric Power Systems,2024,48(5):157-175.
    [7] 康重庆,陈启鑫,苏剑,等. 新型电力系统规模化灵活资源虚拟电厂科学问题与研究框架[J]. 电力系统自动化,2022,46(18):3-14.
    KANG Chongqing,CHEN Qixin,SU Jian,et al. Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system[J]. Automation of Electric Power Systems,2022,46(18):3-14.
    [8] 司方远,张宁,韩英华,等. 面向多元灵活资源聚合的区域综合能源系统主动调节能力评估与优化:关键问题与研究架构[J]. 中国电机工程学报,2024,44(6):2097-2119.
    SI Fangyuan,ZHANG Ning,HAN Yinghua,et al. Fundamental problems and research framework for assessment and optimization of the functional regulation capacity of the regional integrated energy system under the aggregation of diversified and flexible resources[J]. Proceedings of the CSEE,2024,44(6):2097-2119.
    [9] 宁剑,江长明,张哲,等. 可调节负荷资源参与电网调控的思考与技术实践[J]. 电力系统自动化,2020,44(17):1-8.
    NING Jian,JIANG Changming,ZHANG Zhe,et al. Thinking and technical practice of adjustable load resources participating in dispatching and control of power grid[J]. Automation of Electric Power Systems,2020,44(17):1-8.
    [10] 周竞,耿建,唐律,等. 可调节负荷资源参与电力辅助服务市场规则分析与思考[J]. 电力自动化设备,2022,42(7):120-127.
    ZHOU Jing,GENG Jian,TANG Lü,et al. Rule analysis and cogitation for adjustable load resources participating in ancillary service market[J]. Electric Power Automation Equipment,2022,42(7):120-127.
    [11] 黎博,陈民铀,钟海旺,等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报,2023,43(2):555-581.
    LI Bo,CHEN Minyou,ZHONG Haiwang,et al. A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE,2023,43(2):555-581.
    [12] 张智刚,康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报,2022,42(8):2806-2819.
    ZHANG Zhigang,KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE,2022,42(8):2806-2819.
    [13] 周孝信,鲁宗相,刘应梅,等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报,2014,34(29):4999-5008.
    ZHOU Xiaoxin,LU Zongxiang,LIU Yingmei,et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE,2014,34(29):4999-5008.
    [14] 国家发展改革委,国家能源局. 关于提升电力系统调节能力的指导意见[EB/OL]. (2018-02-28)[2024-05-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201803/t20180323_962694.html.
    National Development and Reform Commission,National Energy Administration. Guidance on enhancing the regulation capacity of the power system[EB/OL]. (2018-02-28)[2024-05-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201803/t20180323_962694.html.
    [15] 国家发展改革委,国家能源局. 关于完善能源绿色低碳转型体制机制和政策措施的意见[EB/OL]. (2022-01-30)[2024-05-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202202/t20220210_1314511.html.
    National Development and Reform Commission,National Energy Administration. Opinions on improving the institutional mechanisms and policy measures for energy green and low-carbon transformation[EB/OL]. (2022-01-30)[2024-05-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202202/t20220210_1314511.html.
    [16] 国家发展改革委,国家能源局. 关于促进新时代新能源高质量发展的实施方案[EB/OL]. (2022-05-14) [2024-05-15]. https://www.mee.gov.cn/zcwj/gwywj/202205/t20220530_983840.shtml.
    National Development and Reform Commission,National Energy Administration. Implementation plan for promoting high-quality development of new energy in the new era[EB/OL]. (2022-05-14) [2024-05-15]. https://www.mee.gov.cn/zcwj/gwywj/202205/t20220530_983840.shtml.
    [17] 国家能源局. 关于印发《能源碳达峰碳中和标准化提升行动计划》的通知[EB/OL]. (2022-09-20)[2024-05-15]. https://www.nea.gov.cn/2022-10/09/c_1310668927.htm.
    National Energy Administration. Notice on issuing the action plan for enhancing standardization of energy carbon peak and carbon neutrality[EB/OL]. (2022-09-20)[2024-05-15]. https://www.nea.gov.cn/2022-10/09/c_1310668927.htm.
    [18] 国家发展改革委,国家能源局. 关于加强电网调峰储能和智能化调度能力建设的指导意见[EB/OL]. (2024-01-27)[2024-05-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202402/t20240227_1364257.html.
    National Development and Reform Commission,National Energy Administration. Guidance on strengthening peak regulation,energy storage,and intelligent dispatching capacity of the power grid[EB/OL]. (2024-01-27)[2024-05-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202402/t20240227_1364257.html.
    [19] 韩肖清,李廷钧,张东霞,等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术,2021,47(9):3036-3046.
    HAN Xiaoqing,LI Tingjun,ZHANG Dongxia,et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering,2021,47(9):3036-3046.
    [20] 鲁宗相,李海波,乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报,2017,37(1):9-20.
    LU Zongxiang,LI Haibo,QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE,2017,37(1):9-20.
    [21] 范宇辉,姜婷玉,黄奇峰,等. 基于画像的工业园区需求响应潜力评估[J]. 电力系统自动化,2024,48(1):41-49.
    FAN Yuhui,JIANG Tingyu,HUANG Qifeng,et al. Portrait-based assessment on demand response potential of industrial parks[J]. Automation of Electric Power Systems,2024,48(1):41-49.
    [22] WANG K,YIN R X,YAO L Z,et al. A two-layer framework for quantifying demand response flexibility at bulk supply points[J]. IEEE Transactions on Smart Grid,2018,9( 4):3616-3627.
    [23] ZHANG P,LU X X,LI K P. Achievable energy flexibility forecasting of buildings equipped with integrated energy management system[J]. IEEE Access,2021,9:122589-122599.
    [24] ABIRI-JAHROMI A,BOUFFARD F. Contingency-type reserve leveraged through aggregated thermostatically-controlled loads:part Ⅱ:case studies[J]. IEEE Transactions on Power Systems,2016,31(3):1981-1989.
    [25] 栗子豪,李铁,吴文传,等. 基于Minkowski Sum的热泵负荷调度灵活性聚合方法[J]. 电力系统自动化,2019,43(5):14-21.
    LI Zihao,LI Tie,WU Wenchuan,et al. Minkowski Sum based flexibility aggregating method of load dispatching for heat pumps[J]. Automation of Electric Power Systems,2019,43(5):14-21.
    [26] HELENO M,SOARES R,SUMAILI J,et al. Estimation of the flexibility range in the transmission-distribution boundary[C]//2015 IEEE Eindhoven PowerTech. Eindhoven,Netherlands. IEEE,2015:1-6.
    [27] CAPITANESCU F. AC OPF-based methodology for exploiting flexibility provision at TSO/DSO interface via OLTC-controlled demand reduction[C]//2018 Power Systems Computation Conference (PSCC). Dublin,Ireland. IEEE,2018:1-6.
    [28] 崔屹峰,李珍国,贾清泉,等. 基于参数辨识与状态估计的温控负荷响应能力动态评估[J]. 电力系统自动化,2021,45(1):150-158.
    CUI Yifeng,LI Zhenguo,JIA Qingquan,et al. Dynamic evaluation of response potential of thermostatically controlled load based on parameter identification and state estimation[J]. Automation of Electric Power Systems,2021,45(1):150-158.
    [29] WEN Y L,HU Z C,YOU S,et al. Aggregated feasible region of heterogeneous demand-side flexible resources:part Ⅰ:theoretical derivation of the exact model[EB/OL]. (2021-11-09)[2024-05-15]. https://doi.org/10.48550/arXiv.2111.04963.
    [30] TAN Z F,ZHONG H W,XIA Q,et al. Estimating the robust P-Q capability of a technical virtual power plant under uncertainties[J]. IEEE Transactions on Power Systems,2020,35(6):4285-4296.
    [31] KALANTAR-NEYESTANAKI M,SOSSAN F,BOZORG M,et al. Characterizing the reserve provision capability area of active distribution networks:a linear robust optimization method[J]. IEEE Transactions on Smart Grid,2020,11(3):2464-2475.
    [32] WANG S Y,WU W C. Stochastic flexibility evaluation for virtual power plant by aggregating distributed energy resources[EB/OL]. (2020-11-02)[2024-05-15]. https://doi.org/10.48550/arXiv.2006.16170.
    [33] 姜云鹏,任洲洋,李秋燕,等. 考虑多灵活性资源协调调度的配电网新能源消纳策略[J]. 电工技术学报,2022,37(7):1820-1835.
    JIANG Yunpeng,REN Zhouyang,LI Qiuyan,et al. An accommodation strategy for renewable energy in distribution network considering coordinated dispatching of multi-flexible resources[J]. Transactions of China Electrotechnical Society,2022,37(7):1820-1835.
    [34] 刘帅,李华强,武姝凝,等. 考虑灵活性资源传输精细化建模的配电网优化运行[J/OL]. 电网技术:1-15[2023-12-28]. https://doi.org/10.13335/j.1000-3673.pst.2023.0398.
    LIU Shuai,LI Huaqiang,WU Shuning,et al. Optimizing the operation of distribution network by considering the refined modeling of flexible resource transmission [J/OL]. Power System Technology:1-15[2023-12-28]. https://doi.org/10.13335/j.1000-3673.pst.2023.0398.
    [35] 刘英琪,谢敏,韦薇,等. 高比例风电接入的电力系统灵活性评估与优化[J]. 电力建设,2019,40(9):1-10.
    LIU Yingqi,XIE Min,WEI Wei,et al. Assessment and optimization for power system flexibility with high proportion of wind power[J]. Electric Power Construction,2019,40(9):1-10.
    [36] 黄鹏翔,周云海,徐飞,等. 基于灵活性裕度的含风电电力系统源荷储协调滚动调度[J]. 中国电力,2020,53(11):78-88.
    HUANG Pengxiang,ZHOU Yunhai,XU Fei,et al. Source-load-storage coordinated rolling dispatch for wind power integrated power system based on flexibility margin[J]. Electric Power,2020,53(11):78-88.
    [37] 臧延雪,边晓燕,梁思琪,等. 计及线路传输能力的新能源电力系统灵活性评估及优化调度方法[J]. 电力系统保护与控制,2023,51(11):15-26.
    ZANG Yanxue,BIAN Xiaoyan,LIANG Siqi,et al. Flexibility evaluation and optimal dispatching method of a renewable energy power system considering line transmission capacity[J]. Power System Protection and Control,2023,51(11):15-26.
    [38] 袁晓冬,费骏韬,胡波,等. 资源聚合商模式下的分布式电源、储能与柔性负荷联合调度模型[J]. 电力系统保护与控制,2019,47(22):17-26.
    YUAN Xiaodong,FEI Juntao,HU Bo,et al. Joint scheduling model of distributed generation,energy storage and flexible load under resource aggregator mode[J]. Power System Protection and Control,2019,47(22):17-26.
    [39] MANSOURI S A,NEMATBAKHSH E,JORDEHI A R,et al. An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination[J]. Applied Energy,2023,341:121062.
    [40] 季宏岩. 分布式储能聚合商参与需求响应的运行优化模型研究[D]. 北京:华北电力大学,2022.
    JI Hongyan. Study on operational optimization model of distributed energy storage aggregators participating in demand response[D]. Beijing:North China Electric Power University,2022.
    [41] 姜涛,吴成昊,李雪,等. 考虑电动汽车充放电的输配协同能量-灵活性市场出清机制[J]. 电力系统自动化,2024,48(7):210-224.
    JIANG Tao,WU Chenghao,LI Xue,et al. Clearing mechanism of energy and flexibility markets with transmission and distribution coordination considering charging and discharging of electric vehicles[J]. Automation of Electric Power Systems,2024,48(7):210-224.
    [42] 吴珊,边晓燕,张菁娴,等. 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述[J]. 电工技术学报,2023,38(6):1662-1677.
    WU Shan,BIAN Xiaoyan,ZHANG Jingxian,et al. A review of domestic and foreign ancillary services market for improving flexibility of new power system[J]. Transactions of China Electrotechnical Society,2023,38(6):1662-1677.
    [43] 田圆,陈红坤,刘颖杰,等. 辅助服务市场背景下灵活性资源调峰补偿价格决策方法[J]. 电力自动化设备,2024,44(9):154-161,188.
    TIAN Yuan,CHEN Hongkun,LIU Yingjie,et al. Compensation price decision method for peak shaving of flexible resources in context of ancillary service market[J]. Electric Power Automation Equipment,2024,44(9):154-161,188.
    [44] 潘郑楠,邓长虹,徐慧慧,等. 考虑灵活性补偿的高比例风电与多元灵活性资源博弈优化调度[J]. 电工技术学报,2023,38(S1):56-69.
    PAN Zhengnan,DENG Changhong,XU Huihui,et al. Game optimization scheduling of high proportion wind power and multiple flexible resources considering flexibility compensation[J]. Transactions of China Electrotechnical Society,2023,38(S1):56-69.
    [45] 钟佳宇,陈皓勇,陈武涛,等. 含灵活性资源交易的电力市场实时出清[J]. 电网技术,2021,45(3):1032-1041.
    ZHONG Jiayu,CHEN Haoyong,CHEN Wutao,et al. Real-time clearing of electricity markets with flexible resource transactions[J]. Power System Technology,2021,45(3):1032-1041.
    [46] 崔岩,胡泽春,段小宇. 考虑充电需求空间灵活性的电动汽车运行优化研究综述[J]. 电网技术,2022,46(3):981-994.
    CUI Yan,HU Zechun,DUAN Xiaoyu. Review on the electric vehicles operation optimization considering the spatial flexibility of electric vehicles charging demands[J]. Power System Technology,2022,46(3):981-994.
    [47] 王毅,陈进,麻秀,等. 采用分群优化的电动汽车与电网互动调度策略[J]. 电力自动化设备,2020,40(5):77-85.
    WANG Yi,CHEN Jin,MA Xiu,et al. Interactive scheduling strategy between electric vehicles and power grid based on group optimization[J]. Electric Power Automation Equipment,2020,40(5):77-85.
    [48] 胡福年,徐伟成,陈军. 计及电动汽车充电负荷的风电-光伏-光热联合系统协调调度[J]. 电力系统保护与控制,2021,49(13):10-20.
    HU Funian,XU Weicheng,CHEN Jun. Coordinated scheduling of wind power photovoltaic solar thermal combined system considering electric vehicle charging load[J]. Power System Protection and Control,2021,49(13):10-20.
    [49] 刘志坚,戴景,杨灵睿. 考虑电力-交通耦合网动态协调的EV集群灵活性挖掘与优化调度[J]. 电力系统自动化,2024,48(7):127-137.
    LIU Zhijian,DAI Jing,YANG Lingrui. Flexibility mining and optimal scheduling for electric vehicle clusters considering dynamic coordination of power-transportation coupling network[J]. Automation of Electric Power Systems,2024,48(7):127-137.
    [50] 王萍萍,许建中,闫庆友,等. 计及灵活性负荷资源需求响应和不确定性的楼宇微网调度双层优化模型[J]. 电力建设,2022,43(6):128-140.
    WANG Pingping,XU Jianzhong,YAN Qingyou,et al. A two-level scheduling optimization model for building microgrids considering demand response and uncertainties of flexible load resources[J]. Electric Power Construction,2022,43(6):128-140.
    [51] KWON S Y,PARK J Y,KIM Y J. Optimal V2G and route scheduling of mobile energy storage devices using a linear transit model to reduce electricity and transportation energy losses[J]. IEEE Transactions on Industry Applications,2020,56(1):34-47.
    [52] 孙伟卿,刘唯,张婕. 高比例可再生能源背景下配电网动态重构与移动储能协同优化[J]. 电力系统自动化,2021,45(19):80-90.
    SUN Weiqing,LIU Wei,ZHANG Jie. Collaborative optimization for dynamic reconfiguration of distribution network and mobile energy storage in background of high proportion of renewable energy[J]. Automation of Electric Power Systems,2021,45(19):80-90.
    [53] ROCHA P,SIDDIQUI A,STADLER M. Improving energy efficiency via smart building energy management systems:a comparison with policy measures[J]. Energy and Buildings,2015,88:203-213.
    [54] 陈厚合,李泽宁,靳小龙,等. 集成智能楼宇的主动配电网建模及优化方法[J]. 中国电机工程学报,2018,38(22):6550-6563.
    CHEN Houhe,LI Zening,JIN Xiaolong,et al. Modeling and optimization of active distribution network with integrated smart buildings[J]. Proceedings of the CSEE,2018,38(22):6550-6563.
    [55] YU L,QIN S Q,ZHANG M,et al. A review of deep reinforcement learning for smart building energy management[J]. IEEE Internet of Things Journal,2021,8(15):12046-12063.
    [56] 杨珺,侯俊浩,刘亚威,等. 分布式协同控制方法及在电力系统中的应用综述[J]. 电工技术学报,2021,36(19):4035-4049.
    YANG Jun,HOU Junhao,LIU Yawei,et al. Distributed cooperative control method and application in power system[J]. Transactions of China Electrotechnical Society,2021,36(19):4035-4049.
    [57] 夏世威,邹唯薇,张茜,等. 基于交替方向乘子法的电力系统分散式经济调度[J]. 电力系统自动化,2019,43(6):100-106.
    XIA Shiwei,ZOU Weiwei,ZHANG Qian,et al. Decentralized economic dispatch for power system based on alternating direction method of multipliers[J]. Automation of Electric Power Systems,2019,43(6):100-106.
    [58] 陈灵,黄兴华,张功林,等. 考虑削峰填谷的分布式电源集群协同控制方法[J]. 智慧电力,2023,51(4):8-15.
    CHEN Ling,HUANG Xinghua,ZHANG Gonglin,et al. Distributed generations clusters collaborative control method considering peak load shifting[J]. Smart Power,2023,51(4):8-15.
    [59] 赵晶晶,朱炯达,李振坤,等. 考虑灵活性供需鲁棒平衡的两阶段配电网日内分布式优化调度[J]. 电力系统自动化,2022,46(16):61-71.
    ZHAO Jingjing,ZHU Jiongda,LI Zhenkun,et al. Two-stage intraday distributed optimal dispatch for distribution network considering robust balance between flexibility supply and demand[J]. Automation of Electric Power Systems,2022,46(16):61-71.
    [60] GUAN Y J,MENG L X,LI C D,et al. A dynamic consensus algorithm to adjust virtual impedance loops for discharge rate balancing of AC microgrid energy storage units[J]. IEEE Transactions on Smart Grid,2018,9(5):4847-4860.
    [61] 梁海峰,丁政,李鹏. 基于改进一致性算法的孤岛直流微电网储能系统分布式控制策略[J]. 电力系统保护与控制,2023,51(16):59-71.
    LIANG Haifeng,DING Zheng,LI Peng. Distributed control strategy of an energy storage system in an isolated DC microgrid based on an improved consensus algorithm[J]. Power System Protection and Control,2023,51(16):59-71.
    [62] 彭大健,肖浩,裴玮,等. 基于ADMM的共享储能参与电网辅助服务的分布式优化模型[J]. 电力自动化设备,2024,44(2):1-8.
    PENG Dajian,XIAO Hao,PEI Wei,et al. Distributed optimization model of shared energy storage participating in power grid auxiliary service based on ADMM[J]. Electric Power Automation Equipment,2024,44(2):1-8.
    [63] 吕仁周,白晓清,李佩杰,等. 基于交替方向乘子法的电动汽车分散式充电控制[J]. 电力系统自动化,2016,40(16):56-63.
    LYU Renzhou,BAI Xiaoqing,LI Peijie,et al. Decentralized charging control of electric vehicles based on alternate direction method of multiplier[J]. Automation of Electric Power Systems,2016,40(16):56-63.
    [64] 杨冰,王丽芳,廖承林,等. 分布式电动汽车有序充电控制系统模型[J]. 电力系统自动化,2015,39(20):41-46.
    YANG Bing,WANG Lifang,LIAO Chenglin,et al. Distributed coordinated charging control system model for large-scale electric vehicles[J]. Automation of Electric Power Systems,2015,39(20):41-46.
    [65] 程杉,王贤宁,冯毅煁. 电动汽车充电站有序充电调度的分散式优化[J]. 电力系统自动化,2018,42(1):39-46.
    CHENG Shan,WANG Xianning,FENG Yichen. Decentralized optimization of ordered charging scheduling in electric vehicle charging station[J]. Automation of Electric Power Systems,2018,42(1):39-46.
    [66] 段翩,朱建全,刘明波. 基于双层模糊机会约束规划的虚拟电厂优化调度[J]. 电工技术学报,2016,31(9):58-67.
    DUAN Pian,ZHU Jianquan,LIU Mingbo. Optimal dispatch of virtual power plant based on bi-level fuzzy chance constrained programming[J]. Transactions of China Electrotechnical Society,2016,31(9):58-67.
    [67] 李翔宇,赵冬梅. 分散架构下多虚拟电厂分布式协同优化调度[J]. 电工技术学报,2023,38(7):1852-1863.
    LI Xiangyu,ZHAO Dongmei. Distributed coordinated optimal scheduling of multiple virtual power plants based on decentralized control structure[J]. Transactions of China Electrotechnical Society,2023,38(7):1852-1863.
    [68] 何奇琳,艾芊. 基于自律分散控制的多区域虚拟电厂优化调度策略[J]. 水电能源科学,2019,37(6):187-191.
    HE Qilin,AI Qian. Optimal scheduling strategy of multi-region virtual power plant based on autonomous decentralized control[J]. Water Resources and Power,2019,37(6):187-191.
    [69] YAN X Y,GAO C W,MING H,et al. Optimal scheduling strategy and benefit allocation of multiple virtual power plants based on general Nash bargaining theory[J]. International Journal of Electrical Power & Energy Systems,2023,152:109218.
    [70] 谢宏伟,严强,李扬,等. 市场模式下兼顾区域负荷特性的多虚拟电厂分布式协调优化[J]. 电力自动化设备,2023,43(5):199-209.
    XIE Hongwei,YAN Qiang,LI Yang,et al. Distributed coordination optimization of multiple virtual power plants considering regional load characteristics in market[J]. Electric Power Automation Equipment,2023,43(5):199-209.
    [71] 鲁宗相,李海波,乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化,2016,40(13):147-158.
    LU Zongxiang,LI Haibo,QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems,2016,40(13):147-158.
    [72] 朱晓荣,鹿国微. 计及灵活性的配电网储能优化配置[J]. 现代电力,2020,37(4):341-352.
    ZHU Xiaorong,LU Guowei. Optimal allocation of energy storage systems considering flexibility in distribution network[J]. Modern Electric Power,2020,37(4):341-352.
    [73] 王华伟,程小虎,赵蒙蒙,等. 面向分布式光伏消纳的中压配电网储能规划模型和求解方法[J]. 电力建设,2023,44(9):58-67.
    WANG Huawei,CHENG Xiaohu,ZHAO Mengmeng,et al. Method for energy storage planning in medium-voltage distribution networks for distributed photovoltaic consumption[J]. Electric Power Construction,2023,44(9):58-67.
    [74] 林芝羽,李华强,苏韵掣,等. 计及灵活性承载度的电网评估与扩展规划方法[J]. 电力系统保护与控制,2021,49(5):46-57.
    LIN Zhiyu,LI Huaqiang,SU Yunche,et al. Evaluation and expansion planning method of a power system considering flexible carrying capacity[J]. Power System Protection and Control,2021,49(5):46-57.
    [75] NOSAIR H,BOUFFARD F. Flexibility envelopes for power system operational planning[J]. IEEE Transactions on Sustainable Energy,2015,6(3):800-809.
    [76] MARTÍNEZ CESEÑA E A,CAPUDER T,MANCARELLA P. Flexible distributed multienergy generation system expansion planning under uncertainty[J]. IEEE Transactions on Smart Grid,2016,7(1):348-357.
    [77] 黄启航,马雪,白左霞,等. 面向灵活资源配置的电力系统超短期优化调度[J]. 中国电力,2019,52(6):104-110,120.
    HUANG Qihang,MA Xue,BAI Zuoxia,et al. Ultra-short-term optimal scheduling of power system orienting to flexible resources configuration[J]. Electric Power,2019,52(6):104-110,120.
    [78] 王建学,李清涛,王秀丽,等. 大规模新能源并网系统电源规划方法[J]. 中国电机工程学报,2020,40(10):3114-3124.
    WANG Jianxue,LI Qingtao,WANG Xiuli,et al. A generation expansion planning method for power systems with large-scale new energy[J]. Proceedings of the CSEE,2020,40(10):3114-3124.
    [79] MARNERIS I G,BISKAS P N,BAKIRTZIS E A. An integrated scheduling approach to underpin flexibility in European power systems[J]. IEEE Transactions on Sustainable Energy,2016,7(2):647-657.
    [80] 翟一唯. 考虑网络约束的电力系统灵活性评价与优化配置[D]. 济南:山东大学,2018.
    ZHAI Yiwei. Studies on power system flexibility evaluation and optimal allocation considering power network constraints[D]. Jinan:Shandong University,2018.
    [81] 孟安波,林艺城,殷豪. 计及不确定性因素的家庭并网风-光-蓄协同经济调度优化方法[J]. 电网技术,2018,42(1):162-173.
    MENG Anbo,LIN Yicheng,YIN Hao. Synergetic scheduling optimization method of grid-connected home wind-solar-storage system considering uncertainty factors[J]. Power System Technology,2018,42(1):162-173.
    [82] 林顺富,刘持涛,李东东,等. 考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J]. 中国电机工程学报,2020,40(5):1409-1421.
    LIN Shunfu,LIU Chitao,LI Dongdong,et al. Bi-level multiple scenarios collaborative optimization configuration of CCHP regional multi-microgrid system considering power interaction among microgrids[J]. Proceedings of the CSEE,2020,40(5):1409-1421.
    [83] 姚志力,王志新. 计及风光不确定性的综合能源系统两层级协同优化配置方法[J]. 电网技术,2020,44(12):4521-4531.
    YAO Zhili,WANG Zhixin. Two-level collaborative optimal allocation method of integrated energy system considering wind and solar uncertainty[J]. Power System Technology,2020,44(12):4521-4531.
    [84] 张勇军,林晓明,许志恒,等. 基于弱鲁棒优化的微能源网调度方法[J]. 电力系统自动化,2018,42(14):75-82.
    ZHANG Yongjun,LIN Xiaoming,XU Zhiheng,et al. Dispatching method of micro-energy grid based on light robust optimization[J]. Automation of Electric Power Systems,2018,42(14):75-82.
    [85] 陈泽兴,林楷东,张勇军,等. 电-气互联系统建模与运行优化研究方法评述[J]. 电力系统自动化,2020,44(3):11-23.
    CHEN Zexing,LIN Kaidong,ZHANG Yongjun,et al. A review of modeling and optimal operation of integrated electricity-gas system[J]. Automation of Electric Power Systems,2020,44(3):11-23.
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 02,2024
  • Revised:August 27,2024
  • Online: April 03,2025
  • Published: March 28,2025
Article QR Code