Reviews of LVRT technology for D-PMSG
Author:
Clc Number:

TM614;TM761

Fund Project:

The project of The National Natural Science Foundation of China

  • Article
  • | |
  • Metrics
  • |
  • Reference [78]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the large-scale development of wind power, it increases rapidly the number of directly-driven permanent magnet wind turbines connected to the grid, thus which threatens the safety and stability of operation in the power grid. The low voltage ride-through (LVRT) is the primary problem in terms of the safety of wind power connected to grid. The corresponding strategies for wind farms with directly-driven permanent magnet synchronous generator (D-PMSG) are provided from the present researches of LVRT technology for traditional wind farms and other new energy power plants. A review of mainstream LVRT technologies suitable for the features of wind farms with D-PMSG is reported. The mechanism and application of each technology are introduced. The advantages and disadvantages of different technologies are compared, and then corresponding suggestion on the future application is given out. The trend of LVRT technology is discussed. The economic and technical challenges for current large-scale grid-connected wind farms are pointed out for further research.

    Reference
    [1] LIU Y,RAO G H,SHAO R B. Research on offshore wind farms transmitted via VSC HVDC of an Integrated supervision and control system[C]//2020 IEEE International Conference on Artificial Intelligence and Information Systems(ICAⅡS). Dalian,China. IEEE,2020:633-636.
    [2] 郑明,李保宏,陆莹,等. 海上风电场集群输电网可靠性分析[J]. 电力工程技术,2018,37(2):49-54. ZHENG Ming,LI Baohong,LU Ying,et al. Reliability analysis of offshore wind farm transmission network cluster[J]. Electric Power Engineering Technology,2018,37(2):49-54.
    [3] DAKIC J,CHEAH-MANE M,GOMIS-BELLMUNTO,et al. HVAC transmission system for offshore wind power plants including mid-cable reactive power compensation:optimal design and comparison to VSC-HVDC transmission[J]. IEEE Transactions on Power Delivery,2020(99):1-9.
    [4] 王秀丽,张小亮,宁联辉,等. 分频输电在海上风电并网应用中的前景和挑战[J]. 电力工程技术,2017,36(1):15-19. WANG Xiuli,ZHANG Xiaoliang,NING Lianhui,et al. Application prospects and challenges of fractional frequency transmission system in offshore wind power integration[J]. Electric Power Engineering Technology,2017,36(1):15-19.
    [5] PATHAK N,HUZ C. Optimal power transmission in multi-terminal HVDC systems for large offshore wind farms:a matheuristic approach[J]. IET Renewable Power Generation,2020,14(12):2245-2254.
    [6] 曹帅,向往,鲁晓军,等. 风电经混合型MMC外送的暂态能量转移机理与限流耗散策略[J]. 电力系统自动化,2020,44(14):121-129. CAO Shuai,XIANG Wang,LU Xiaojun,et al. Transient energy transfer mechanism and current limiting dissipation strategy in wind power delivery via hybrid modular multilevel converter[J]. Automation of Electric Power Systems,2020,44(14):121-129.
    [7] WUZ Y,LI Y Y. Platform stabilization of floating offshore wind turbines by artificial muscle based active mooring line force control[J]. IEEE/ASME Transactions on Mechatronics,2020,25(6):2765-2776.
    [8] HU Yinlong,WANG Jianning,WANG Zhaoyan,et al. Structural control for a barge-type floating offshore wind turbine with a skyhook inerter configuration[C]//2020 Chinese Control And Decision Conference(CCDC). 2020.
    [9] Global Wind Energy Council. GWEC global wind statts-tics 2017[R]. Brussels:GWEC,2018.
    [10] FENGY C,QUE L J,FENG J M. Spatiotemporal characteristics of wind energy resources from 1960 to 2016 over China[J]. Atmospheric and Oceanic Science Letters,2020,13(2):136-145.
    [11] 孙稚权,项杰,管玉平. 基于ERA-interim资料中国近海风能资源时空分布[J]. 海洋预报,2016,33(3):50-56. SUN Zhiquan,XIANG Jie,GUAN Yuping. Wind energy in the offshore areas of China based on ERA-interim reanalysis data[J]. Marine Forecasts,2016,33(3):50-56.
    [12] 刘霖蔚,宋军. 中国海上风能资源分布与风电机组选型探讨[C]//2014中国环境科学学会学术年会论文集. 成都,2014:343-347. LIU Linwei,SONG Jun. Discussion on the distribution of offshore wind energy resources in China and the selection of wind turbines[C]//Chinese Society For Environ-mental Science. 2014 Annual Meeting of Chinese society of Environmental Sciences. Chengdu,2014:343-347.
    [13] 汤辰. 直驱永磁风电系统低电压穿越技术的研究[D]. 天津:天津理工大学,2018. TANG Chen. Research on low voltage ride through technology in direct drive permanent magnet wind power system[D]. Tianjin:Tianjin University of Technology,2018.
    [14] JIANGZ M,LIU Y T. Low-voltage ride-through remote testing method for offshore wind turbines[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(6):2905-2913.
    [15] 巩真. 基于反馈线性化的永磁直驱风电机组低电压穿越控制[J]. 电机与控制应用,2016,43(12):74-81. GONG Zhen. Low voltage ride through control of permanent magnet synchronous generator wind power systems based on feedback linearization[J]. Electric Machines & Control Application,2016,43(12):74-81.
    [16] IBRAHIM A O,NGUYEN T H,LEE D C,et al. A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers[J]. IEEE Transactions on Energy Conversion,2011,26(3):871-882.
    [17] 孙云鹏,谢冬梅. 双馈风力发电机低电压穿越技术综述[J]. 中国设备工程,2017(15):152-153. SUN Yunpeng,XIE Dongmei. An overview of low voltage ride through technology for DFIG wind turbine systems[J]. China Plant Engineering,2017(15):152-153.
    [18] MOGHADAM F K,NEJAD A R. Evaluation of PMSG-based drivetrain technologies for 10 MW floating offshore wind turbines:pros and cons in a life cycle perspective[J]. Wind Energy,2020,23(7):1542-1563.
    [19] 李和明,董淑惠,王毅,等. 永磁直驱风电机组低电压穿越时的有功和无功协调控制[J]. 电工技术学报,2013,28(5):73-81. LI Heming,DONG Shuhui,WANG Yi,et al. Coordinated control of active and reactive power of PMSG-based wind turbines for low voltage ride through[J]. Transactions of China Electrotechnical Society,2013,28(5):73-81.
    [20] 任亚钊. 永磁直驱风力发电系统低电压穿越控制技术研究[D]. 北京:华北电力大学,2012. REN Yazhao. Research on control technologies of low voltage ride through for direct-drive permanent magnet wind power system[D]. Beijing:North China Electric Power University,2012.
    [21] 周奕鑫,王孝洪,田联房. 双PWM永磁同步风力发电控制器设计[J]. 电气传动,2014,44(7):24-29. ZHOU Yixin,WANG Xiaohong,TIAN Lianfang. Design on thecontroller of dual-PWM PMSG wind turbine systems[J]. Electric Drive,2014,44(7):24-29.
    [22] 张祥宇. 变速风电机组的虚拟惯性与系统阻尼控制研究[D]. 北京:华北电力大学,2013. ZHANG Xiangyu. Virtual inertia and system damping control for variable speed wind turbines[D]. Beijing:North China Electric Power University,2013.
    [23] 王瑞新. 笼型异步变速恒频风力发电系统研究[D]. 北京:华北电力大学,2013. WANG Ruixin. Research on VSCF wind power system of squirrel cage induction generator[D]. Beijing:North China Electric Power University,2013.
    [24] 董淑惠,王毅. 永磁直驱风力发电机组两种主要功率控制策略的对比研究[J]. 电网与清洁能源,2014,30(4):73-80. DONG Shuhui,WANG Yi. Comparative analysis on two main power control strategies of PMSG-based wind turbines[J]. Power System and Clean Energy,2014,30(4):73-80.
    [25] 杜宝星,刘观起,杨玉新. 电网电压跌落时双馈风电系统无功支持策略[J]. 电气技术,2012(12):1-4. DU Baoxing,LIU Guanqi,YANG Yuxin. Reactive power support strategy for wind power system based on DFIG during grid voltage dips[J]. Electrical Engineering,2012(12):1-4.
    [26] 易韵岚. 一种适合低电压穿越的直驱式永磁风力机组控制策略[D]. 长沙:湖南大学,2014. YI Yunlan. An control strategy of direct-drive permanent-magnet wind power system for low voltage ride through[D]. Changsha:Hunan University,2014.
    [27] 亓振新. 面向风电的固定电压跌落装置监控系统研究与开发[D]. 济南:山东大学,2013. QI Zhenxin. Research on the fixed voltage sag monitoring system for wind power[D]. Ji'nan:Shandong University,2013.
    [28] 王莉莉. 基于RTDS的源网协调联合仿真接口模型研究[D]. 北京:华北电力大学,2014. WANG Lili. Research on interface model of source and grid coordinate joint simulation based on RTDS[D]. Beijing:North China Electric Power University,2014.
    [29] 赖联琨,胡浩. 双馈风力发电机组低电压穿越关键技术研究[J]. 华北电力技术,2011(9):26-31. LAI Liankun,HU Hao. Low voltage ride-through of doubly-fed induction generator system[J]. North China Electric Power,2011(9):26-31.
    [30] 向昌明,范立新,蒋一泉,等. 风电场内风电机组连锁脱网机理与低电压穿越能力研究[J]. 电力自动化设备,2013,33(12):91-97. XIANG Changming,FAN Lixin,JIANG Yiquan,et al. Analysis of cascading trip-off mechanism and low voltage ride through capability of wind farm[J]. Electric Power Automation Equipment,2013,33(12):91-97.
    [31] 耿华,刘淳,张兴,等. 新能源并网发电系统的低电压穿越[M]. 北京:机械工业出版社,2014. GENG Hua,LIU Chun,ZHANG Xing,et al. Low voltage ride through of new energy grid-connected power generation system[M]. Beijing:China Machine Press,2014.
    [32] 王冬冬. 兆瓦级双馈风电机组低电压穿越控制技术研究[D]. 北京:华北电力大学,2013. WANG Dongdong. Research on the control technology of MW doubly fed wind generators low voltage ride through[D]. Beijing:North China Electric Power University,2013.
    [33] 王国英,贾一凡,邓娜,等. 应用于海上风电接入的VSC-HVDC系统主网侧交流故障穿越方案[J]. 全球能源互联网,2019,2(2):146-154. WANG Guoying,JIA Yifan,DENG Na,et al. Grid side fault ride through solution for offshore wind connection with VSC-HVDC[J]. Journal of Global Energy Interconnection,2019,2(2):146-154.
    [34] WANG Mian,HU Yaowei,ZHAO Wenjian,et al. Application of modular multilevel converter in medium voltage high power permanent magnet synchronous generator wind energy conversion systems[J]. IET Renewable Power Generation,2016,10(6):824-833.
    [35] QUY B,GAO L,MA G F,et al. Crowbar resistance value-switching scheme conjoint analysis based on statistical sampling for LVRT of DFIG[J]. Journal of Modern Power Systems and Clean Energy,2019,7(3):558-567.
    [36] DIN Z,ZHANG J Z,ZHU Y D,et al. Impact of grid impedance on LVRT performance of DFIG system with rotor crowbar technology[J]. IEEE Access,2019,7:127999-128008.
    [37] 李明东. 风电场实现低电压穿越技术改造方案[J]. 中国电力,2011,44(6):48-51. LI Mingdong. Reform plan of wind farm low voltage ride-through technology[J]. Electric Power,2011,44(6):48-51.
    [38] 付伟,刘天琪,李兴源,等. 静止无功补偿器运行特性分析和控制方法综述[J]. 电力系统保护与控制,2014,42(22):147-154. FU Wei,LIU Tianqi,LI Xingyuan,et al. Analysis of operating characteristic and survey of control methods used in static var compensator[J]. Power System Protection and Control,2014,42(22):147-154.
    [39] 徐江. STATCOM用于改善风电场并网点电压质量的研究[D]. 北京:华北电力大学,2014. XU Jiang. Research of improvement on wind farm integration point voltage quality by using STATCOM[D]. Beijing:North China Electric Power University,2014.
    [40] 雷邦军,费树岷,翟军勇,等. 静止无功补偿器(SVC)的一种新型非线性鲁棒自适应控制设计方法[J]. 中国电机工程学报,2013,33(30):65-70,11. LEI Bangjun,FEI Shumin,ZHAI Junyong,et al. A novel improved nonlinear robust adaptive control design method of SVC[J]. Proceedings of the CSEE,2013,33(30):65-70,11.
    [41] REZAEIAN-MARJANI S,GALVANI S,TALAVAT V,et al. Optimal allocation of D-STATCOM in distributionnetworks including correlated renewable energy sources[J]. International Journal of Electrical Power & Energy Systems,2020,122: 106178.
    [42] 张智勇. 动态电压恢复器的应用研究[D]. 天津:天津理工大学,2008. ZHANG Zhiyong. Study on application of dynamic voltage restorer[D]. Tianjin:Tianjin University of Technology,2008.
    [43] 王德发. 电能质量调节器相关技术研究及APF模拟装置实现[D]. 武汉:华中科技大学,2007. WANG Defa. Studys of the correlative technology of power quality conditioner and development of APF experimental prototype[D]. Wuhan:Huazhong University of Science and Technology,2007.
    [44] VISIERS M,MENDOZA J,BUNEZ J,et al. WINDFACT©,a solution for the grid code compliance of the windfarms in operation[C]//European Conference on Power Electronics & Applications. IEEE,2007.
    [45] CAUSEBROOK A,ATKINSON D J,JACK A G. Faultride-through of large wind farms using series dynamic braking resistors(March 2007)[J]. IEEE Transactions on Power Systems,2007,22(3):966-975.
    [46] 余佩芸. 串联动态制动电阻的双馈风力发电系统低电压穿越技术研究[D]. 重庆:重庆大学,2018. YU Peiyun. Reaserch on low voltage ride through of doubly-fed wind power generation system using SDBR[D]. Chongqing:Chongqing University,2018.
    [47] 王虹富. 并网风电场的有功功率补偿与稳定性控制[D]. 杭州:浙江大学,2010. WANG Hongfu. Active power compensation and stability control for grid-connected wind farms[D]. Hangzhou:Zhejiang University,2010.
    [48] 郭杨,徐青山,李岩岩,等. 双馈异步风力发电系统电网故障穿越能力研究[J]. 电力科学与工程,2011,27(7):1-6,40. GUO Yang,XU Qingshan,LI Yanyan,et al. Research on capability of grid fault riding through in doubly-fed asynchronous wind power generation system[J]. Electric Power Science and Engineering,2011,27(7):1-6,40.
    [49] 党克,郑玉浩,杨富磊,等. 利用串联制动电阻提高光伏并网系统故障穿越能力的研究[J]. 太阳能学报,2017,38(2):302-308. DANG Ke,ZHENG Yuhao,YANG Fulei,et al. Study of improving fault ride-through ability of grid-connected pv generation system using series braking resistor[J]. Acta Energiae Solaris Sinica,2017,38(2):302-308.
    [50] PENGXIN,WANGWEI. A new LVRT method applied on the integration of distributed wind power generation[C]//2012 China International Conference on Electricity Distribution. Shanghai,China. IEEE,2012:1-4.
    [51] 吴俊玲,吴畏,周双喜. 超导储能改善并网风电场稳定性的研究[J]. 电工电能新技术,2004,23(3):59-63. WU Junling,WU Wei,ZHOU Shuangxi. Study on SMES unit for improving the stability of power system connected with wind farms[J]. Advanced Technology of Electrical Engineering and Energy,2004,23(3):59-63.
    [52] 魏蔚. 多螺管线圈型超导储能磁体漏磁场的研究[D]. 兰州:兰州交通大学,2015. WEI Wei. Study on the leakage field by multi-coil type superconducting magnet[D]. Lanzhou:Lanzhou Jiatong University,2015.
    [53] 边相阳,袁帅,孟令剑,等. SMES提高DFIG低电压穿越能力策略研究[J]. 吉林电力,2019,47(6):27-31,56. BIAN Xiangyang,YUAN Shuai,MENG Lingjian,et al. Operational research on SMES for improving DFIG low voltage ride through capability[J]. Jilin Electric Power,2019,47(6):27-31,56.
    [54] 刘诗涵. 直驱永磁海上风电系统低电压穿越能力研究[D].长沙:长沙理工大学,2017. LIU Shihan. The research on low voltage ride through of direct drive permanent magnet offshore wind power system[D]. Changsha:Changsha University of Science & Technology,2017.
    [55] 王鹏,王晗,张建文,等. 超级电容储能系统在风电系统低电压穿越中的设计及应用[J]. 中国电机工程学报,2014,34(10):1528-1537. WANG Peng,WANG Han,ZHANG Jianwen,et al. Design and application of supercapacitor energy storage system used in low voltage ride through of wind power generation system[J]. Proceedings of the CSEE,2014,34(10):1528-1537.
    [56] TROVATO V,CONENNA D,DICORATO M,et al. The economic and financial benefits for wind turbines providing frequency response exploiting the kinetic energy or operating part-loaded[J]. IET Generation,Transmission and Distribution, 2020.
    [57] RAMIREZ D,BLANCO M,ZAREI M E,et al. Robust control of a floating OWC WEC under open-switch fault condition in one or in both VSCs[J]. IET Renewable Power Generation,2020,14(13):2538-2549.
    [58] BADIHI H,ZHANGY M,PILLAY P,et al. Fault-tolerant individual pitch control for load mitigation in wind turbines with actuator faults[J]. IEEE Transactions on Industrial Electronics,2021,68(1):532-543.
    [59] YANG X P Y,DUAN X F,TIAN F F,et al. Low voltage ride-through of directly driven wind turbine with permanent magnet synchronous generator[C]//Asia-pacific Power & Energy Engineering Conference. IEEE,2009.
    [60] 李建林,徐少华. 直接驱动型风力发电系统低电压穿越控制策略[J]. 电力自动化设备,2012,32(1):29-33. LI Jianlin,XU Shaohua. Control strategy of low-voltage ride-through for direct-drive wind power generation system[J]. Electric Power Automation Equipment,2012,32(1):29-33.
    [61] KIM K H,JEUNG Y C,LEE D C,et al. LVRT scheme of PMSG wind power systems based on feedback linearization[J]. IEEE Transactions on Power Electronics,2012,27(5):2376-2384.
    [62] 刘忠义,刘崇茹,李庚银. 提高直驱永磁风机低电压穿越能力的功率协调控制方法[J]. 电力系统自动化,2015,39(3):23-29. LIU Zhongyi,LIU Chongru,LI Gengyin. Coordinated power control method for improving low voltage ride through capability of wind turbines with permanent magnet synchronous generators[J]. Automation of Electric Power Systems,2015,39(3):23-29.
    [63] 韩金刚,陈昆明,汤天浩. 半直驱永磁同步风力发电系统建模与电流解耦控制研究[J]. 电力系统保护与控制,2012,40(10):110-115. HAN Jingang,CHEN Kunming,TANG Tianhao. A research on modeling of half-direct coupling wind power system and decoupling current control[J]. Power System Protection and Control,2012,40(10):110-115.
    [64] 姚兴佳,马永兴,郭庆鼎. 直驱风力发电系统双PWM变流器控制技术[J]. 电源学报,2011,9(5):74-78. YAO Xingjia,MA Yongxing,GUO Qingding. Research ondouble PWM converter control technology in direct drive wind power system[J]. Journal of Power Supply,2011,9(5):74-78.
    [65] 郑翔宇,沈渭程,李诚,等. 直驱风机低电压穿越控制技术研究及实测验证[J]. 中国电力,2013,46(11):100-104. ZHENG Xiangyu,SHEN Weicheng,LI Cheng,et al. Research and verification of LVRT control techniques for direct-drive wind turbines[J]. Electric Power,2013,46(11):100-104.
    [66] 卢沁雄,韩如成,张媛,等. 永磁直驱风电机组的低电压穿越控制策略[J]. 电源技术,2015,39(11):2489-2492,2530. LU Qinxiong,HAN Rucheng,ZHANG Yuan,et al. Control strategy for low voltage ride-though of direct-drive permanent magnet wind power generator[J]. Chinese Journal of Power Sources,2015,39(11):2489-2492,2530.
    [67] 张佳军. 风光储微电网多电源协调控制策略研究[D]. 北京:华北电力大学,2013. ZHANG Jiajun. Research on coordinated control strategies of micro-sources for wind/PV/battery micro-grid[D]. Beijing:North China Electric Power University,2013.
    [68] 崔立悦,高桂革,曾宪文. 直驱式永磁同步风机组低电压穿越的控制策略研究[J]. 科技与创新,2017(1):15-17. CUI Liyue,GAO Guige,ZENG Xianwen. Research on control strategy for low voltage ride-though of direct-drive permanent magnet wind power generator[J]. Science and Technology & Innovation,2017(1):15-17.
    [69] 吕绍峰. 永磁直驱风电系统全功率变流器并网控制技术的研究[D]. 天津:天津理工大学,2019. LYU Shaofeng. Research on grid-connected control technology of full power converter for permanent magnet direct-drive wind power generation system[D]. Tianjin:Tianjin University of Technology,2019.
    [70] 袁明华. 基于VSG的永磁直驱风电系统低电压穿越技术研究[D]. 北京:北方工业大学,2019. YUAN Minghua. Research on low voltage ride through technology of permanent magnet direct drive wind power system based on VSG[D]. Beijing:North China University of Technology,2019.
    [71] 周鹏,张新燕,邸强,等. 基于虚拟同步机控制的双馈风电机组预同步并网策略[J]. 电力系统自动化,2020,44(14):71-78. ZHOU Peng,ZHANG Xinyan,DI Qiang,et al. Pre-synchronous grid-connection strategy of DFIG-based wind turbine with virtual synchronous generator control[J]. Automation of Electric Power Systems,2020,44(14):71-78.
    [72] 厉璇,宋强,刘文华,等. 风电场柔性直流输电的故障穿越方法对风电机组的影响[J]. 电力系统自动化,2015,39(11):31-36,125. LI Xuan,SONG Qiang,LIU Wenhua,et al. Impact of fault ride-through methods on wind power generators in a VSC-HVDC system[J]. Automation of Electric Power Systems,2015,39(11):31-36,125.
    [73] KIM C,KIM W. Coordinated fuzzy-based low-voltage ride-through control for PMSG wind turbines and energy storage systems[J]. IEEE Access,2020,8:105874-105885.
    [74] ZHOU A,LIY W,MOHAMED Y. Mechanical stress comparison of PMSG wind turbine LVRT methods[J]. IEEE Transactions on Energy Conversion,2020,PP(99):1.
    [75] ADEFARATI T,NOZAKUZAKU M S L,NAIDOO R,et al. High gain DC-DC converter for DC power transmission for offshore wind farms[C]//2020 19th International Conference on Harmonics and Quality of Power(ICHQP). Dubai,United Arab Emirates. IEEE,2020:1-6.
    [76] 龚永智,陶晔,许传敏,等. 考虑风电机组馈入电流的风电场汇集线路保护整定计算方法[J]. 电力系统保护与控制,2020,48(11):128-135. GONG Yongzhi,TAO Ye,XU Chuanmin,et al. Relay protection setting calculation of wind farm collector lines considering wind turbine increased short-circuit current[J]. Power System Protection and Control,2020,48(11):128-135.
    [77] 杨喆麟,汪可友,李国杰. 考虑风电不确定性的VSC-MTDC互联系统两阶段交直流最优潮流[J]. 电力系统保护与控制,2020,48(14):25-34. YANG Zhelin,WANG Keyou,LI Guojie. Two-stage AC/DC optimal power flow with VSC-MTDC considering uncertainty of wind power[J]. Power System Protection and Control,2020,48(14):25-34.
    [78] LE MÉTAYER P,DWORAKOWSKI P,MANEIRO J. Unidirectional thyristor-based DC-DC converter for HVDC connection of offshore wind farms[C]//202022nd European Conference on Power Electronics and Applications. Lyon,France, 2020.
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 27,2020
  • Revised:October 28,2020
  • Adopted:January 06,2021
  • Online: April 02,2021
  • Published: March 28,2021
Article QR Code