Fault types identification of power grid based on deep belief network
Author:
Clc Number:

TM741

Fund Project:

Key Project of Smart Grid Technology and Equipment of National Key Research and Development Plan of China under Grant 2017YFB0902900

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Efficient and reliable fault classification is beneficial to guide the dispatchers in finding and removing the fault quickly, thus restoring system power supply promptly, so the classification is of great significance for ensuring the safe and reliable operation of the system. A fault classification method based on deep belief network is proposed to overcome deficiencies of traditional fault classification, such as shallow intelligent methods' dependence on signal processing technology and artificial experience, and the lack of feature extraction and expression for complex power system. The raw data of each phase current- voltage and zero sequence current-voltage are taken as the network input, and the features of fault state are automatically learned and extracted from the original time-domain signals to realize the fault type identification. The simulation results of the IEEE 39-bus system and real fault cases of power grid show that the proposed fault type identification method has good capability of fault feature extraction. Besides, the proposed method keeps the original characteristics of data in the process of dimensionality reduction, and it is not affected by factors including transition resistance, fault time, fault location and load size. Therefore, it identifies fault types more accurately than other traditional artificial neural networks do.

    Reference
    [1] 薛士敏,崔淼. 基于形态学梯度算法的微电网行波保护方案[J]. 电力系统保护与控制,2019,47(2):31-39. XUE Shimin,CUI Miao. Current traveling wave based protection scheme for microgrids using morphological gradient algorithm[J]. Power System Protection and Control,2019,47(2):31-39.
    [2] 郑玉平,司鑫尧,吴通华,等. 特高压半波长交流输电线路的行波保护[J]. 电力系统自动化,2020,44(18):124-131. ZHENG Yuping, SI Xinyao, WU Tonghua, et al. Travelling wave protection of UHV half-wavelength AC transmission lines[J]. Automation of Electric Power Systems, 2020, 44(18):124-131.
    [3] 付华,刘公权,邢亮. 基于同步挤压小波变换的故障行波测距方法[J]. 电力系统保护与控制,2020,48(2):18-24. FU Hua,LIU Gongquan,XING Liang. Fault traveling wave ranging method based on synchrosqueezing wavelet transform[J]. Power System Protection and Control,2020,48(2):18-24.
    [4] 段建东,张保会,张胜祥. 利用线路暂态行波功率方向的分布式母线保护[J]. 中国电机工程学报,2004,24(6):7-12. DUAN Jiandong,ZHANG Baohui,ZHANG Shengxiang. A distributed bus protection using transient traveling wave power directions of transmission lines[J]. Proceedings of the CSEE,2004,24(6):7-12.
    [5] 闫旭,李春明. 基于模糊逻辑的可控串补线路故障分类[J]. 电力系统保护与控制,2016,44(5):122-127. YAN Xu,LI Chunming. Fuzzy-logic-based fault classification in a series compensated transmission line[J]. Power System Protection and Control,2016,44(5):122-127.
    [6] 童晓阳,罗忠运. 基于模糊支持向量机的输电线路故障模糊分类方法及其降维显示[J]. 高电压技术,2015,41(7):2276-2282. TONG Xiaoyang,LUO Zhongyun. Transmission line faults classification method based on fuzzy support vector machine and reducing-dimension display[J]. High Voltage Engineering,2015,41(7):2276-2282.
    [7] 房亚囡,杨柳,龚仁敏,等. 一种基于网格分形理论的电力系统故障选相方法[J]. 浙江电力,2018,37(8):28-34. FANG Yanan,YANG Liu,GONG Renmin,et al. A fault phase selection method for power system based on mesh fractal theory[J]. Zhejiang Electric Power,2018,37(8):28-34.
    [8] 杨丹,刘沛,王冬青,等. 基于分形理论的输电线路故障检测和选相[J]. 电力系统自动化,2005,29(15):35-39,88. YANG Dan,LIU Pei,WANG Dongqing,et al. Detection of faults and phase-selection using fractal techniques[J]. Automation of Electric Power Systems,2005,29(15):35-39,88.
    [9] 肖文龙,王维博,刘勇,等. 基于小波分析理论的特高压输电线路故障选相研究[J]. 电力系统保护与控制,2016,44(17):90-96. XIAO Wenlong,WANG Weibo,LIU Yong,et al. Research of fault phase selection on UHV transmission lines based on wavelet analysis[J]. Power System Protection and Control,2016,44(17):90-96.
    [10] 黄建明,李晓明,瞿合祚,等. 考虑小波奇异信息与不平衡数据集的输电线路故障识别方法[J]. 中国电机工程学报,2017,37(11):3099-3107,3365. HUANG Jianming,LI Xiaoming,QU Hezuo,et al. Method for fault type identification of transmission line considering wavelet singular information and unbalanced dataset[J]. Proceedings of the CSEE,2017,37(11):3099-3107,3365.
    [11] 李达,薛卿,孔德健,等. 基于PSO-BP算法的高压输电线路故障分类[J]. 电气自动化,2018,40(6):42-44. LI Da,XUE Qing,KONG Dejian,et al. Fault classification of high voltage transmission line based on PSO-BP algorithm[J]. Electrical Automation,2018,40(6):42-44.
    [12] 魏东,龚庆武,来文青,等. 基于卷积神经网络的输电线路区内外故障判断及故障选相方法研究[J]. 中国电机工程学报,2016,36(S1):21-28. WEI Dong,GONG Qingwu,LAI Wenqing,et al. Research on internal and external fault diagnosis and fault-selection of transmission line based on convolutional neural network[J]. Proceedings of the CSEE,2016,36(S1):21-28.
    [13] 杨光亮,乐全明,郁惟镛,等. 基于小波神经网络和故障录波数据的电网故障类型识别[J]. 中国电机工程学报,2006,26(10):99-103. YANG Guangliang,YUE Quanming,YU Weiyong,et al. A fault classification method based on wavelet neural networks and fault record data[J]. Proceedings of the CSEE,2006,26(10):99-103.
    [14] 李东敏,刘志刚,蔡军,等. 基于多小波包系数熵和人工神经网络的输电线路故障类型识别方法[J]. 电网技术,2008,32(24):65-69. LI Dongmin,LIU Zhigang,CAI Jun,et al. Transmission lines fault recognition method based on multi-wavelet packet coefficient entropy and artificial neural network[J]. Power System Technology,2008,32(24):65-69.
    [15] HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527-1554.
    [16] 李宁,费守江,刘国亮,等. 基于深度信念网络的计量装置故障溯源研究[J]. 智慧电力,2020,48(7):118-124. LI Ning,FEI Shoujiang,LIU Guoliang,et al. Fault traceability of metering device based on deep belief network[J]. Smart Power,2020,48(7):118-124.
    [17] 魏艳霞,许锐埼,殷豪. 基于深度信念网络的配变台区跳闸预测[J]. 智慧电力,2020,48(6):119-124. WEI Yanxia,XU Ruiqi,YIN Hao. Trip prediction of distribution transformer station based on deep belief network[J]. Smart Power,2020,48(6):119-124.
    [18] HUANG G B,LEE H,LEARNED-MILLER E. Learning hierarchical representations for face verification with convolutional deep belief networks[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence,RI,USA. IEEE,2012:2518-2525.
    [19] HINTON G,SALAKHUTDINOV R. Discovering binary codes for documents by learning deep generative models[J]. Topics in Cognitive Science,2011,3(1):74-91.
    [20] HINTON G,DENG L,YU D,et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE Signal Processing Magazine,2012,29(6):82-97.
    [21] LINX S,LI B W,YANG X Y. Engine components fault diagnosis using an improved method of deep belief networks[C]//2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). London,UK. IEEE,2016:454-459.
    [22] 胡伟,郑乐,闵勇,等. 基于深度学习的电力系统故障后暂态稳定评估研究[J]. 电网技术,2017,41(10):3140-3146. HU Wei,ZHENG Le,MIN Yong,et al. Research on power system transient stability assessment based on deep learning of big data technique[J]. Power System Technology,2017,41(10):3140-3146.
    [23] 朱乔木,党杰,陈金富,等. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报,2018,38(3):735-743. ZHU Qiaomu,DANG Jie,CHEN Jinfu,et al. A method for power system transient stability assessment based on deep belief networks[J]. Proceedings of the CSEE,2018,38(3):735-743.
    [24] 刘俊,孙惠文,吴柳,等. 电力系统暂态稳定性评估综述[J]. 智慧电力,2019,47(12):44-53,122. LIU Jun,SUN Huiwen,WU Liu,et al. Overview of transient stability assessment of power systems[J]. Smart Power,2019,47(12):44-53,122.
    [25] 蔡国伟,张启蒙,杨德友,等. 基于改进深度置信网络的电力系统暂态稳定评估研究[J]. 智慧电力,2020,48(3):61-68. CAI Guowei,ZHANG Qimeng,YANG Deyou,et al. Research on power system transient stability assessment based on improved deep belief network[J]. Smart Power,2020,48(3): 61-68.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:938
  • PDF: 1700
  • HTML: 2380
  • Cited by: 0
History
  • Received:October 23,2020
  • Revised:November 17,2020
  • Adopted:May 25,2020
  • Online: April 02,2021
  • Published: March 28,2021
Article QR Code