DOI:10.12158/j.2096-3203.2019.06.019

水风储微电网电源容量的优化配置

陈永进¹, 吴杰康², 翁兴航¹, 张文杰², 罗伟明² (1. 广东电网有限责任公司韶关供电局, 广东 韶关 512000; 2. 广东工业大学自动化学院, 广东 广州 510006)

摘 要:由于配电系统线路功率和节点电压的约束,在微电网规划中需要弃风弃水来减少设备容量。文中提出一种高效能的友好并网型水风储微电网优化配置方法。通过量化风电资源和水电资源的最大可发电量,结合所提的 微电网运行控制策略及运行约束,建立以微电网投资及运营成本、年弃风弃水电量和电源年发电量为目标函数的 多目标优化模型;通过基于精英策略的非支配性排序遗传算法(NSGA-II)求出模型的最优解集,并采用逼近理想解 排序方法(TOPSIS)选择满意的配置方案。通过韶关地区某实际配电系统进行多场景仿真验证,结果表明该模型提 高了可再生能源利用率,保证了配电系统的电能质量,验证了该配置方法的实用性和经济性。

关键词:微电网;优化配置;小水电;小风电;储能

中图分类号:TM727 文献标志码:A

文章编号:2096-3203(2019)06-0137-10

0 引言

随着能源危机和环境污染等问题日益突出,电 力工业需大力发展新能源,其中,小水电因具有分 布式开发、就地成网和发电成本低的优势得到了广 泛应用^[1];风力发电因其装机规模灵活及环境效益 高等优点逐渐成为新能源发电的重要组成部分。 然而,风速的随机性和水流量的季节性波动导致电 源输出功率不稳定,在一定程度上限制了风电和小 水电的安装容量。近年来,微电网是解决大规模分 布式电源应用的主要方式之一,它是一个集分布式 电源、负荷、储能单元、变换器以及相关能量管理系 统为一体的小型发配电系统。充分利用自然资源 的互补特性,合理配置微电网的电源和储能设备容 量,为负荷提供可靠、优质的电能,是研究微电网规 划的主要目标。

目前,在微电网优化配置研究中,可根据运行 状态分为独立型和并网型的微电网^[2]。文献[3— 6]介绍了独立型微电网容量的优化配置方法。其 中文献[3]以微电网投资及年运行成本最小为优化 目标,考虑负荷失电率、水电机组启停和蓄电池运 行等约束,确定光伏模块和储能单元的最优配置方 案。文献[5]考虑了微源的不同控制策略,建立微 电网投资运营成本和环保效益的多目标优化模型。 文献[7—8]利用风水互补特性对供电系统优化运 行建模。文献[9—13]从不同的角度对微电网并网 运行的容量优化配置方法进行研究。其中文献[9]

收稿日期:2019-05-25;修回日期:2019-07-18 基金项目:国家自然科学基金资助项目(51567002) 从环境效益的角度提出了目标函数,并采用非支配 排序多目标遗传算法求解,最后利用效用理论得出 配置方案。文献[10]从微电网经济性角度研究微 电网电源容量的优化配置方法。文献[11]从工程 角度提出友好并网型风光储微电网的容量优化配 置方法,考虑了电力系统运行规范及微电网联络线 功率约束等条件。以上文献从不同角度对微电网 容量优化配置建立数学模型,但均未对风电和水电 资源进行量化,未建立以资源利用最大化为目标的 数学模型。此外,上述研究未考虑并网型微电网在 配电系统中的作用及影响。文献[13]虽然考虑了 配电网的网架结构及微电网接入后的运行情况,但 未考虑微电网内部的网络架构和在配电网环境下 的大型微电网规划问题。

文中提出一种高效能的友好并网型水风储微 电网的优化配置方法。首先量化微电网内风电资 源和水电资源,得出资源最大可发电量,提出微电 网的运行控制策略,考虑了微电网在配电系统中的 运行约束,以微电网投资及运营成本、年弃风弃水 电量及电源年发电量为目标建立多目标优化的数 学模型。然后采用基于精英策略的非支配性排序 遗传算法(NSGA-II)求出模型最优解集,该算法相 较传统优化方法,无须将多目标转化为单目标,而 是选择并排序 Pareto 非支配解,从而更好地保证了 各目标函数的独立性和求解全局最优值的能力。 最后,利用基于逼近理想解排序方法(TOPSIS)的多 属性决策方法^[14]选择合适的配置方案。采用韶关 地区某实际配电系统进行仿真,并分析各场景下的 优化结果,验证了该模型的有效性和实用性。

1 水风储微电网结构及控制策略

1.1 水风储微电网结构

对于富含水电资源的地区,规划大型微电网系 统有利于充分利用可再生能源,提高经济效益,但 大容量微电网与配电系统间的交互功率将影响电 力系统层面的运行,且不同系统运行方式下微电网 的规划方案也不同^[15-16]。文中研究了配电系统环 境下大型微电网的规划模型,如图1所示,节点26 至33为微电网的内部线路,通过公共连接点(point of common coupling,PCC)即节点26 与配电系统相 连接。

图1 配电系统与微电网结构

Fig.1 Microgrids in a power distribution system

微电网内部结构如图 2 所示,主要由微电源 (小水电、风电)及蓄电池构成,其中微电源安装在 微电网的各个节点,在 PCC 节点处安装储能设备, 并统一调控微电网功率。

图 2 干线式水风储微电网结构 Fig.2 Structure of a microgrid with main lines

1.2 微电网的运行控制策略

风电和小水电的输出功率与自然条件(风速、 降雨量、水流量等)密切相关,具有随机性和不可调 度性。蓄电池作为一种功率可控单元,可在额定运 行范围内进行充电或放电,在一定程度上平抑电源 功率波动,并跟踪负荷功率,因此,微电网需在 PCC 节点处安装蓄电池进行功率调节。文中的能量控 制系统以自治为主,即电能自给自足,多余上网。

首先计算微电网内电源与负荷的不平衡功率, 然后根据蓄电池的运行状态进行功率调节,微电网 不平衡功率为:

$$\Delta P_{\rm PCC} = P_{\rm wt} + P_{\rm hy} - P_{\rm D} \tag{1}$$

式中:P_{wt},P_b,P_D分别为风电机组、水电机组和负

荷有功功率。微电网能量控制策略如下:

(1) 当 $\Delta P_{PCC} = 0$ 时,风电和小水电的功率恰好 满足负荷需求,蓄电池无充放电,微电网与配电系 统无能量交换;

(2)当ΔP_{PCC} < 0时,风电和小水电的功率不足,在蓄电池充放电功率及荷电状态允许时,优先使用蓄电池放电补充不平衡功率;若蓄电池功率仍无法满足负荷需求,则向配电网中购电以满足负荷用电;</p>

(3)当 ΔP_{PCC} > 0 时,风电和小水电的功率过 剩,在蓄电池充放电功率及荷电状态允许时,优先 对蓄电池充电;若蓄电池仍无法完全吸收不平衡功 率,则将多余功率出售给电网。

2 水风发电资源量化及微电源出力模型

文中通过量化小水电、风电的最大可发电量来 描述微电网内可利用的水、风发电资源,并对发电 机组的出力进行建模。

2.1 风电资源量化和风电机组模型

一个区域的风电资源量等于气流产生的动能 转化电能的大小,故在 *t* 时段内风电资源可发电量 的表达式为:

$$E_{\rm wind}(t) = \left(\frac{1}{2}\rho SC_{\rm p}v^3(t)\right)\Delta t \tag{2}$$

式中: ρ 为空气密度;S 为气流通过的截面积;v(t) 为t 时段的风速; C_p 为风能利用系数,理论最大值 为 0.59; Δt 为仿真步长。

风力发电机的输出功率与风速的三次方成正 比,其输出功率表达式可用分段函数表示为^[17]:

$$P_{wt}(v) = \begin{cases} 0 & 0 \leq v < v_{ci}, v > v_{co} \\ P_{r} \frac{v^{3} - v_{ci}^{3}}{v_{r}^{3} - v_{ci}^{3}} & v_{ci} \leq v < v_{r} \\ P_{r} & v_{r} \leq v \leq v_{co} \end{cases}$$
(3)

式中: *P*_r 为风电机组的额定输出功率; *v*_{ci}, *v*_{co} 分别 为风电机组的切入、切出风速; *v*_r 为额定风速。

2.2 水电资源量化和水电机组模型

河流的势能转化电能的大小,即水电资源可发 电量表达式如下:

$$E_{1}(t) = 9.81 n_{0} O(t) H(t) \Lambda t$$
 (4)

式中: Q(t) 为 t 时段内的水流量; H(t) 为 t 时段内 的河流落差; η_h 为水能转化为电能的效率,取值为 [0,1]。

由于小水电多为径流式水电站,水库调节能力小,故机组出力主要与每时段的水流量和水头高度

有关,具体的表达式如下[18]:

$$P_{\rm hv}(t) = AQ'(t)H'(t) \tag{5}$$

式中: Q'(t)为t时段内发电的水流量; H'(t)为t 时段内水电站净水头高度; A 为规模系数,根据水电 站规模而定,小水电站的系数取值为[6,8]。

3 优化配置模型

文中所提的友好并网型水风储微电网优化配 置是一个多目标优化的数学模型,主要包括微电网 的投资运营成本、年弃风弃水电量和电源年发电量 3个目标函数,优化变量为微电网各个节点的设备 容量。

3.1 目标函数

3.1.1 微电网成本

微电网成本函数主要由年等值设备投资费用 C_{inv}及年平均维护费用 C_{om} 组成。总成本函数 F₁:

$$\ln F_1 = \min(C_{\rm inv} + C_{\rm om}) \tag{6}$$

文中的微电网规划对象是小水电、风电及储能的容量,因此,年等值设备投资费用等于小水电、风电机组及蓄电池的投资成本乘以资金回收系数^[19] μ_{CRF},即:

$$C_{\rm inv} = \mu_{\rm CRF} \left[\sum_{i=1}^{N} \left(S_{\rm hy,i} C_{\rm inv}^{\rm hy} + S_{\rm wt,i} C_{\rm inv}^{\rm wt} \right) + S_{\rm bat} C_{\rm inv}^{\rm bat} \right]$$
(7)

其中:

$$\mu_{\rm CRF} = \frac{r \left(1 + r\right)^{Y_i}}{r \left(1 + r\right)^{Y_i} - 1} \tag{8}$$

式中: $S_{hy,i}$, $S_{wt,i}$ 分别为节点 i 配置的小水电、风电 机组容量; S_{bat} 为蓄电池容量; C_{inv}^{hy} , C_{inv}^{wt} , C_{inv}^{bat} 分别 为单位容量的小水电、风电机组和蓄电池组的价 格; N 为微电网的节点数; r 为折现率; Y_i 为项目寿 命周期, 一般为 20 a。

年平均维护费用 Com 为:

$$C_{\rm om} = \sum_{i=1}^{N} (K_{\rm hy} S_{\rm hy,i} + K_{\rm wt} S_{\rm wt,i}) + K_{\rm bat} S_{\rm bat}$$
(9)

式中: K_{hy}, K_{wt}, K_{bat}分别为小水电、风电机组和蓄电池组的单位容量维护费用。

3.1.2 年弃风弃水电量

充分利用可再生能源,减少发电资源流失是微 电网规划中的重要原则之一。文中将已量化的风 电及水电资源年最大可发电量与所配置电源年发 电量的差额作为目标函数,即年弃风弃水电量 *F*₂, 其表达式为:

$$\min F_{2} = \min \left[\sum_{t=1}^{T} \sum_{i=1}^{N} \left(P_{\text{DG},i}^{\max}(t) - P_{\text{DG},i}(t) \right) \Delta t \right]$$
(10)

其中:

$$\begin{cases} P_{\text{DG},i}^{\text{max}}(t) = \frac{E_{\text{hy},i}(t) + E_{\text{wind},i}(t)}{\Delta t} \\ P_{\text{DG},i}(t) = P_{\text{hy},i}(t) + P_{\text{wt},i}(t) \end{cases}$$
(11)

式中: $E_{hy,i}(t)$, $E_{wind,i}(t)$ 分别为 t 时段内节点 i 的 水电和风电资源年最大可发电量; $P_{hy,i}(t)$, $P_{wt,i}(t)$ 分别为节点 i 的水电机组和风电机组在 t 时段发出 的有功功率; T 为研究的总时间。

3.1.3 电源年发电量

为了充分利用风电和水电资源,提高清洁能源 的发电比例,形成低碳的发电结构,并可靠地满足 本地负荷的需求,小水电机组和风电机组的发电量 应实现最大化,表达式如下:

$$\max F_{3} = \max \left[\sum_{i=1}^{N} \sum_{t=1}^{T} \left(P_{\text{wt},i}(t) + P_{\text{hy},i}(t) \right) \Delta t \right]$$
(12)

文中以一年的小时数为仿真总时间,步长 Δt 选取 1 h。

3.2 约束条件

3.2.1 配电系统的运行约束

(1)支路潮流约束。配电网中支路潮流满足如 下约束条件:

$$\begin{cases} P_i = V_i \sum_{j \in i} V_j (G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij}) \\ Q_i = V_i \sum_{j \in i} V_j (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij}) \end{cases}$$
(13)

式中: P_i , Q_i 分别为注入节点 i的有功功率和无功 功率; V_i , V_j 分别为节点 i 和j的电压幅值; $j \in i$ 为 与节点 i 直接相连的节点; G_{ij} , B_{ij} 分别为节点 i 与j之间的支路电导和电纳; θ_{ij} 为节点 i 与j之间的电 压相位差。

(2)线路功率约束。线路输送功率要小于允许 的最大输送功率:

$$S_l \leqslant S_l^{\max} \quad l \in [1, N_l] \tag{14}$$

式中: S_l , S_l^{max} 分别为配电系统中流经第l条支路的 功率及其最大允许功率; N_l 为配电系统的总支 路数。

(3)电压偏移量约束。节点电压偏移量要小于 其最大允许值而大于其最小允许值:

$$\delta_{\lim}^{\min} \leq \delta_i \leq \delta_{\lim}^{\max} \tag{15}$$

其中:

$$\delta_i = \frac{V_i - V_0}{V_0} \times 100\%$$
 (16)

式中: δ_i 为节点*i*的电压偏移量; δ_{lim}^{min} , δ_{lim}^{max} 分别为配 电系统中节点的最小负向和最大正向电压偏移量; V_0 为配电系统中主变低压侧的节点电压幅值。 3.2.2 微电网的约束

(1)分布式电源接入容量约束。根据《分布式 电源接入电网技术规定》的要求^[20],PCC处的分布 式电源容量不宜超过上一级变压器供电区域内最 大负荷的25%,表达式如下:

$$\sum_{i=1}^{N} \left(S_{wt,i} + S_{hy,i} \right) \leq 25\% \sum_{j=1}^{n} S_{Dj}^{max}$$
(17)

式中: S^{max} 为配电系统第 j 节点的最大负荷功率; n 为配电系统节点数。

(2) 蓄电池运行约束。蓄电池充放电过程中的 主要约束是荷电状态约束和充放电功率约束^[21]。

(a)荷电状态约束。假设蓄电池在 t 时段的容量为 S_{bat}(t)。当蓄电池充电达到最大容量 S_{max} 时,停止充电;当蓄电池放电达到最小充电状态 S_{min} 时,停止放电。数学表达式如下:

$$S_{\min} \leqslant S_{\text{bat}} \leqslant S_{\max} \tag{18}$$

(b)充放电功率约束。充放电功率每小时不得 大于蓄电池最大容量的20%。因此,充放电功率约 束不等式如下:

$$\begin{cases} P_{c} \leqslant \frac{0.2S_{\max}}{\Delta t} \\ P_{d} \leqslant \frac{0.2S_{\max}}{\Delta t} \end{cases}$$
(19)

式中: P_e, P_d分别为蓄电池的充、放电功率。

(3) 微电网功率平衡约束。微电网中,如果忽略功率损耗,那么电源输出有功功率应与负荷有功 功率相等:

 $P_{\rm wt}(t) + P_{\rm hy}(t) + P_{\rm bat}(t) = P_{\rm D}(t) + P_{\rm ex}(t)$ (20)

式中: $P_{bat}(t)$ 为微电网在t 时段蓄电池的功率,正值 为发出功率,负值为吸收功率; $P_{ex}(t)$ 为微电网在t时段与配电系统电能交换的功率。

(4)电源容量利用率约束。电源容量的利用率 在一定程度上反映设备的技术经济性。文中以电 源一年实际出力与全年额定运行功率的比值作为 电源利用率,保证电源具有一定的设备负荷率。电 源容量利用率应不小于其下限值:

$$\alpha = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} (P_{wt,i}(t) + P_{hy,i}(t))}{\sum_{i=1}^{N} \sum_{t=1}^{T} (P_{c,i}^{wt} + P_{c,i}^{hy})} \ge \alpha_{min} \quad (21)$$

式中: $P_{c,i}^{\text{st}}$, $P_{c,i}^{\text{hy}}$ 分别为微电网内节点 *i* 的风电机组 和水电机组的额定功率; α_{\min} 为电源容量利用率的 下限值。

(5) 自供电率约束。文中用全年满足负荷供电

小时数占总研究时间的比例来表征自供电率,自供 电率越高,微电网的自给自足能力越强。微电网自 供电率应大于其最小允许值:

$$\beta = \frac{\sum_{i=1}^{l} \operatorname{Time}(P_{\mathrm{MG}i}(t) > P_{\mathrm{D}i}(t))}{T} \ge \beta_{\mathrm{min}} \quad (22)$$

式中: β_{min} 为最小允许的自供电率,取值为[0,1]; Time($P_{MGi}(t) > P_{Di}(t)$)为当 $P_{MGi}(t)$ 大于 $P_{Di}(t)$ 时,函数值等于1,反之则为0。

(6)功率倒送约束。微电网过多的倒送功率可 能给大电网的稳定性带来不利影响^[22],需要对联络 线的倒送功率进行一定的约束。微电网倒送功率 应小于其最大允许值。

$$P_{\rm M2G}(t) \leqslant P_{\rm M2G}^{\rm max} \tag{23}$$

式中: $P_{M2G}(t)$ 为微电网在 t 时段向配电系统倒送的 功率; P_{M2G}^{max} 为微电网最大允许倒送功率。

4 优化配置模型求解方法

4.1 优化模型与变量编码方式

根据上文所构建的水风储微电网优化配置模型,其目标函数及约束表达式如下:

控制变量 x 为微电网的小水电、风电机组及蓄电池组容量,具体编码表达式如下:

$$x = [S_{hat,1}, S_{hy,1}, S_{wt,1}, \dots, S_{hy,N}, S_{wt,N}]$$
 (25)
4.2 基于 NSGA-II 算法的求解模型

文中的优化配置模型是一个多变量的非线性 多目标优化问题,针对该类问题通常采用多目标进 化算法。

文中采用基于精英策略的非支配性排序遗传 算法(non-dominated sorting genetic algorithm, NSGA-II),该算法具有降低非劣排序的复杂程度、提高运 算速度、收敛性好和全局搜索能力强等优点^[23-26]。 NSGA-II 算法是基于非支配排序遗传算法改进所 得,其主要在3个方面改进:快速的非支配排序、精 英策略的引进、拥挤度和拥挤度比较算子。

4.2.1 快速非支配排序算法

设 S_p 为种群中解p所支配的考察解集, n_p 为解 p被支配的解数目。首先,计算解集中所有个体的 n_p 和 S_p ,将 n_p =0的对应个体放入第一层非支配集 合 Z_1 中,并删除 S_p 中属于 Z_1 的所有个体;其次,按 照同样的方法在余下的集合 S_p 中进行选择排序,得 出第二层非支配集合 Z_2 ,并在 S_p 中删除 Z_2 的个体; 最后重复上述操作,直到所有个体被分层。

4.2.2 拥挤度计算

首先对同一非支配层的个体 p 进行计算得各目标分量并排序;其次,个体 p 拥挤度是计算其相邻的2个个体 p-1和p+1之间的距离,即等于2个个体在子目标函数上的距离差之和,如式(26)所示:

 $d_p = (f_{1,p+1} - f_{1,p-1}) + (f_{2,p+1} - f_{2,p-1})$ (26) 通过排序和拥挤度比较可以挑选出较优的前 *N* 个个体入选父代种群 *X*。采用的选择策略是:对于 同一非支配层的两个个体,优先选择拥挤度较大的 个体;对于不同非支配层的2个个体,优先选择较小 非支配层的个体。微电网优化配置问题的求解流 程如图 3 所示。

图 3 求解步骤 Fig.3 Solution steps

4.3 基于 TOPSIS 法的方案选择

文中采用 NSGA-Ⅱ算法求解微电网优化配置结 果是一组最优的 Pareto 解集,虽然解集中每一个解 都处于最优的前沿,但是对于决策者来说难以直接 从解集中挑选最优方案。TOPSIS 法是对多目标进 行决策的一种常用方法,通过对评测对象与最优解 和最劣解的欧式距离进行排序,选择既靠近最优解 又远离最劣解的最适对象。文中以微电网的投资 成本、年弃风弃水电量、年发电量和配电系统中最 大电压偏移量为指标,利用层次分析法确定4个指 标的权重,如表1所示。通过TOPSIS 法进行方案选 择,具体流程如图4所示。

表 1 各项指标权重 Table 1 Weights of different indices

指标类型	指标权重
微电网成本	0.068 7
弃风/弃水电量	0.388 9
年发电量	0.388 9
电压偏移量	0.153 5

图 4 最优方案选择的流程 Fig.4 Flow chart of optimal plan filtering

5 实例计算与分析

5.1 算例介绍

文中以韶关地区某实际干线式配电系统为算例,接线如图5所示。

图 5 韶关某地区配电系统 Fig.5 Power distribution system in an area of Shaoguan

微电网内年水流量、风速及负荷曲线如图 6 所示,微电网分布式电源参数如表 2 所示,配电系统的 4 种典型运行方式如表 3 所示。潮流计算功率基准

值为100 MV·A,电压基准值为10.5 kV。文中设置 电压最大允许偏移量为10%,NSGA-II算法参数的 设置分别为种群个数50,进化代数200。

图6 微电网内年水流量、风速及负荷曲线

Fig.6 Curves of annual water flow, annual wind speed and annual load in the microgrid

表 2 微电网电源参数

	Table 2	Parameters	of microgrid	equipment
--	---------	------------	--------------	-----------

电源 类别	投资成本/ (万元·k₩ ⁻¹)	年运行维护成本/ (元•k₩ ⁻¹)
风电	1	100
小水电	1.2	157
蓄电池*	1 000	1

*:蓄电池单机容量为1kW·h,其投资成本和 年运行维护成本单位均为元/(kW·h)。

表 3 地区微电网的 4 种典型运行方式

Table	3	Typical operation modes of
	m	icrogrid in Shaoguan

运行 方式	负荷/ MW	水流量/ (m ³ ・s ⁻¹)	平均风速/ (m・s ⁻¹)
丰小	0.377	15.3	4.535
丰大	1.913	15.3	4.535
枯小	0.153	0.8	4.311
枯大	1.615	0.8	4.311

5.2 不同场景下微电网配置结果及分析

为研究储能设备及电压偏移量对微电网配置 方案的影响,文中设置3种情景进行对比仿真。场 景Ⅰ:在10%电压偏移量约束下微电网仅配置小水 电、风电。场景Ⅱ:在10%电压偏移量约束下微电 网配置小水电、风电及储能。场景Ⅲ:在15%电压 偏移量约束下微电网配置小水电、风电及储能。得 到不同场景下微电网年发电量与各个指标之间的 关系,如图7所示。

由图 7 可看到场景 I 电源容量利用率高且成本 最低,但是年发电量少,弃风弃水电量多,利用资源 的效果并不理想。场景 II 虽然电源容量利用率最 小且成本高,但能提供较好的电能质量,资源利用 效果较好。场景 III 电源容量利用率和成本适中,发 电资源利用效果最好,但电压偏移量较大,电能质 量较差。

3种场景优化配置方案如表4至表6所示,表7 为各场景总体对比情况。其中场景 I 风水微电网 的自供电率为 87.35%,电源容量利用率 44.40%。 场景 II 水风储微电网的自供电率为 97.18%,电源综 合容量利用率为 41.90%,PCC 节点安装蓄电池组共 2 974 kW・h。场景 III 水风储微电网的自供电率为 96.79%,电源容量利用率为 40.86%,PCC 节点安装 蓄电池组共 2 341 kW・h。

由表4至表6可知,相比场景Ⅰ,场景Ⅱ各节点

	表 4 场景 微电网配置方案 Table 4 Configuration scheme of microgrid in scenario								
节点	小水电 容量/ kW	风电 容量/ kW	弃水 电量/ (MW • h)	弃风 电量/ (MW•h)	年发 电量/ (MW・h)	最大电 压偏移 量/%			
10	224	32	1 322	213	1 791	-8.95			
11	369	10	654	221	2 451	8.98			
12	279	100	1 027	188	2 111	9.38			
13	359	593	690	18	2 630	9.65			
14	200	232	1 471	140	1 716	9.80			
15	355	678	705	14	2 646	9 1 9			

表 5 场景 II 微电网配置方案 Table 5 Configuration scheme of microgrid in scenario Ⅱ

节点	小水电 容量/ kW	风电 容量/ kW	弃水 电量∕ (MW•h)	弃风 电量/ (MW•h)	年发 电量/ (MW•h)	最大电 压偏移 量/%
10	538	611	213	17	3 112	7.96
11	177	349	1 620	97	1 610	8.71
12	242	210	1 218	148	1 961	9.23
13	484	127	321	178	2 827	9.64
14	387	121	590	181	2 556	9.91
15	286	367	994	90	2 243	8.87

表6 场景Ⅲ微电网配置方案

Table 6 Configuration scheme of microgrid in scenario

节点	小水电 容量/ kW	风电 容量/ kW	弃水 电量/ (MW•h)	弃风 电量/ (MW•h)	年发 电量/ (MW•h)	最大电 压偏移 量/%
10	690	497	54	42	3 231	10.99
11	398	56	556	204	2 566	11.98
12	692	254	53	132	3 142	12.51
13	200	265	1 473	128	1 727	12.72
14	251	305	1 167	113	2 047	12.89
15	585	203	144	150	3 032	12.29

```
Table 7 Comparison of three scenarios
```

场景	小水电 容量/ kW	风电 容量/ kW	弃水 电量/ (MW•h)	弃风 电量/ (MW•h)	年发 电量/ (MW·h)	最大电 压偏移 量/%	成本/ 万元
Ι	1 786	1 645	5 869	794	13 345	9.80	322.933
I	2 114	1 785	4 956	711	14 309	9.91	390.783
Ш	2 816	1 580	3 447	769	15 745	12.89	424.441

电源容量都有所提高,主要是因为蓄电池起到平抑 不平衡功率、跟踪负荷的作用,提高了可再生能源 发电比例。场景Ⅲ中,大负荷节点处均接上大容量 电源,尤其是小水电的容量,这是因为电压偏移量 的增大将允许微电网接入更多的电源容量。此外, 可以看出配置储能设备能有效地提高微电网自供 电率约9%~10%,但电源容量利用率有所降低。由 表7可见,提高小水电容量、降低风电容量,微电网 可获得更多的发电量。综上所述,微电网可以通过 配置储能或松弛电压偏移量约束来提高可再生能 源发电机组容量,随着电源容量的提高,设备利用 率有所降低。

5.3 计及孤网模式的微电网配置分析

微电网运行模式灵活,可并网亦可孤网运行, 而不同的运行方式将影响微电网的配置结果。为 保障孤网模式下的负荷需求,微电网配置柴油发电 机和储能,并通过控制出力实现微电网运行模式平 滑切换^[27-28]。文中以一年的孤岛运行场景检验微 电网的独立运行能力。在孤岛模式下,成本函数 *F*₁ 应计及柴油机的成本(含机组安装成本、运行维护 成本及燃料成本)。为更好的体现孤岛运行模式中 柴油发电机和储能设备的重要性,文中设置了3个 场景分析。场景 I 为微电网仅配置小水电、风电。 场景 II 为微电网配置小水电、风电及储能。场景 II 为微电网配置小水电、风电、储能和柴油发电机。 方案对比结果如表 8 所示。

表 8 3 种场景方案的对比 Table 8 Comparison of three scenarios

场景	小水电 容量/ kW	风电 容量/ kW	储能 容量/ (kW・h)	柴油发电 机容量/ (kW・h)	孤网自 供电率 /%	总成本 /万元
Ι	1 786	1 645	0	0	92.32	322.933
I	2 114	1 785	2 974	0	98.97	390.783
Ш	2 241	1 896	2 024	677	99.90	553.097

由表8可见,场景Ⅱ相比场景Ⅰ孤网模式的自 供电率提高了约6.65%,表明蓄电池能有效提高微 电网在孤网模式下的供电可靠性。场景Ⅲ中由于 柴油机和储能设备起到了跟踪负荷的作用,自供电 率达99.9%。可见,水风储微电网无论在并网或孤 网模式下都具有较高的供电可靠性,而柴油机对水 风储微电网自供电率的提升较小。

5.4 计及储能寿命周期的微电网经济性分析

在微电网规划周期内,储能成本影响整体规划 的经济性,而储能成本除建设、运维成本外,还需考 虑其实际使用寿命及置换成本。蓄电池的使用寿 命与其运行方式密切相关,选择合适、最优的控制 方式不仅可以实现微网的经济运行,还可降低置换 成本。文中的主要工作是考虑项目周期内微源的 配置方案,未对储能优化运行加以讨论,仅对项目 周期内储能总成本与经济效益的关系作定性分析。 吞吐量法可计算蓄电池的寿命,并求出储能的置换 成本:

$$C_{\rm rep}^{\rm ESS} = \left(\frac{Y_{\rm a}}{L_{\rm ESS}} - 1\right) S_{\rm bat} C_{\rm inv}^{\rm bat}$$
(27)

式中: Y_a , L_{ESS} 分别为项目周期、蓄电池寿命,具体 计算参见文献[29]。

由 5.2 节分析可知,储能可以增加机组发电量, 提高微网自供电率,故经济效益由微电网售电收益 和提升负荷供应量收益两部分组成:

$$R = \sum_{t=1}^{I} C_{\text{sell}}^{\text{M2G}}(t) P_{\text{ex}}^{\text{DG}}(t) + \sum_{t=1}^{I} C_{\text{buy}}^{\text{M2G}}(t) P_{\text{ad}}^{\text{L}}(t)$$
(28)

式中: $C_{\text{buy}}^{\text{M2G}}$, $C_{\text{sell}}^{\text{M2G}}$ 分别为微电网向配电网的买电和 卖电价; $P_{\text{ex}}^{\text{DG}}(t)$, $P_{\text{ad}}^{\text{L}}(t)$ 分别为微源增发功率和微 电网新增的负荷功率。

计算 5.2 节中场景 I 和场景 Ⅱ 的经济效益,结果如表9 所示。

表9 计及储能置换成本的方案对比

Table 9Scenarios comparison consideringreplacement cost of energy storage devices

场景	小水电 容量 /kW	风电 容量 /kW	储能 容量/ (kW・h)	微电网 总成本 /万元	储能 总成本 /万元	年发电 收益 /万元	自供电 收益 /万元
Ι	1 786	1 645	0	322.933	0	594.944	0
П	2 114	1 785	2 974	390.783	35.470	734.140	3.181

由表9可知微电网在考虑储能设备置换成本 后,项目周期内的总成本增加,但微电网向配电网 年售电的效益远大于微电网的总成本,因此,适当 提高储能的容量可以提高微电网的总体收益。文 中对储能的控制策略以自治为主,并未对其进行最 优控制,故置换成本会相对较高,微电网收益也会 受到影响,仅从宏观上对其经济性作了定性的分析。

6 结语

文中建立了高效能的友好并网型水风储微电 网优化配置模型,并提出了相应的运行控制策略。 考虑了配电系统与微电网的运行约束等,利用 NSGA-II 算法实现多目标优化配置求解,对不同场 景进行仿真分析,结果表明:

(1)微电网可通过配置储能或松弛电压偏移量 约束来配备更大容量的可再生能源机组,并提高小 水电比例,微电网将获得更多的发电量;

(2)文中的水风储微电网模型在并网或孤网状态下均具有较高的自供电率,算例证明了储能设备 对微电网的供电可靠性有较大的提升; (3) 文中的微电网配置模型具有较好的经济性,电源发电收益远大于投资成本,储能设备有效提高了微网的发电效益。

实际系统仿真证明了所提水风储微电网优化 配置模型的有效性和合理性,为今后研究配电系统 中的微电网规划设计提供了思路,后续将进一步开 展微电网优化运行对配置方案的影响研究。

本文得到广东电网有限责任公司科技项目 (030200QQ00180001)资助,谨此致谢!

参考文献:

[1] 敬正书. 小水电与西部大开发[J]. 中国水利,2001(8): 12-13.

JING Zhengshu. Small hydropower and China's western development[J]. China Water Resources, 2001(8):12-13.

- [2] 杨新法,苏剑,吕志鹏,等. 微电网技术综述[J]. 中国电机工 程学报,2014,34(1):57-70.
 YANG Xinfa,SU Jian,LYU Zhipeng, et al. Overview on microgrid technology [J]. Proceedings of the CSEE, 2014, 34(1): 57-70.
- [3] 杨清,袁越,王敏,等. 独立型水光储微电网系统容量优化配置[J]. 电力自动化设备,2015,35(10):37-44.
 YANG Qing, YUAN Yue, WANG Min, et al. Optimal capacity configuration of standalone hydro-photovoltaic-storage microgrid [J]. Electric Power Automation Equipment, 2015, 35(10): 37-44.
- [4] 刘思夷,赵波,汪湘晋,等. 基于 Benders 分解的独立型微电
 网鲁棒优化容量配置模型[J].电力系统自动化,2017,41
 (21):119-126,146.

LIU Siyi,ZHAO Bo,WANG Xiangjin, et al. Capacity configuration model for robust optimization of stand-alone microgrid based on benders decomposition [J]. Automation of Electric Power Systems,2017,41(21):119-126,146.

- [5] 陈健,王成山,赵波,等.考虑不同控制策略的独立型微电网 优化配置[J].电力系统自动化,2013,37(11):1-6.
 CHEN Jian, WANG Chengshan, ZHAO Bo, et al. Optimal sizing for stand-alone microgrid considering different control strategies
 [J]. Automation of Electric Power Systems, 2013,37(11):1-6.
- [6] 程苒,常湧,黄华,等. 基于多目标的独立微电网电源容量优 化设计[J]. 水电能源科学,2017,35(10):198-202.
 CHENG Ran, CHANG Yong, HUANG Hua, et al. Multi-objective based optimal capacity design of isolated microgrid [J].
 Water Resources and Power,2017,35(10):198-202.
- [7] 刘志红,刘明明.风水互补微电网的功率波动节能控制数学 建模[J].电网与清洁能源,2015,31(10):123-127.
 LIU Zhihong, LIU Mingming. Power fluctuations energy saving control mathematical modeling of the wind and hydro power complementary micro grid [J]. Power Systerm and Clean Energy,2015,31(10):123-127.
- [8] 尚志娟,周晖,王天华. 带有储能装置的风电与水电互补系 统的研究[J]. 电力系统保护与控制,2012,40(2):99-105.

SHANG Zhijuan, ZHOU Hui, WANG Tianhua. Research of complementary system for wind power with energy storage devices and hydro power [J]. Power System Protection and Control, 2012,40(2):99-105.

[9] 刘峪涵,汪沨,谭阳红.并网型微电网多目标容量优化配置 及减排效益分析[J].电力系统及其自动化学报,2017,29 (9):70-75.

LIU Yuhan, WANG Feng, TAN Yanghong. Multi-objective optimal capacity configuration and emission reduction benefit analysis of grid-connected microgrid [J]. Proceedings of the CSU-EPSA, 2017, 29(9):70-75.

[10] 吕智林, 王先齐, 谭颖. 采用改进 BBO 算法的并网型微电网 电源优化配置[J]. 电力系统及其自动化学报, 2017, 29 (6):35-44.

LYU Zhilin, WANG Xianqi, TAN Ying. Optimal allocation of power supply of grid-connected microgrid using improved biogeography-based optimization algorithm[J]. Proceedings of the CSU-EPSA,2017,29(6):35-44.

- [11] 窦晓波,袁简,吴在军,等.并网型风光储微电网容量改进 优化配置方法[J].电力自动化设备,2016,36(3):26-32.
 DOU Xiaobo,YUAN Jian,WU Zaijun, et al. Improved configuration optimization of PV-wind-storage capacities for grid-connected microgrid[J]. Electric Power Automation Equipment, 2016,36(3):26-32.
- [12] 汪湘晋,赵波,吴红斌,等. 并网型交直流混合微电网优化 配置分析[J]. 电力系统自动化,2016,40(13):55-62.
 WANG Xiangjin,ZHAO Bo,WU Hongbin, et al. Optimal sizing analysis of grid-connected hybrid AC-DC microgrid[J]. Automation of Electric Power Systems,2016,40(13):55-62.
- [13] 刘娇扬,郭力,杨书强,等. 配电网中多光储微网系统的优 化配置方法[J]. 电网技术,2018,42(9):2806-2815.
 LIU Jiaoyang, GUO Li, YANG Shuqiang, et al. Optimal sizing for multi PV-and-storage microgrids in distribution network
 [J]. Power System Technology,2018,42(9):2806-2815.
- [14] 李丽娜. 集中典型类型的多属性决策方法[D]. 成都:西南 交通大学,2013.
 LI Lina. Several typical types of methods about multiple attribute decision making[D]. Chengdu:Southwest Jiaotong University,2013.
- [15] FEI X, QIAN A. New modeling framework considering economy, uncertainty, and security for estimating the dynamic interchange capability of multi-microgrids [J]. Electric power systems research, 2017, 152;237-278.
- [16] WANG X X, WANG C S, et al. Optimal voltage regulation for distribution networks with multi-microgrids [J]. Applied Energy, 2018, 210:1027-1036.
- [17]周玮,孙辉,顾宏,等. 计及风险备用约束的含风电场电力
 系统动态经济调度[J].中国电机工程学报,2012,32(1):
 47-55,19.

ZHOU Wei, SUN Hui, GU Hong, et al. Dynamic economic dispatching of wind farm electric power system with risk reserve constraints [J]. Proceedings of the CSEE, 2012, 32(1):4755,19.

- [18] 蔡兴国,林士颖,马平,等. 电力市场中梯级水电站优化运行的研究[J]. 电网技术,2003,27(9):6-9.
 CAI Xingguo, LIN Shiying, MA Ping, et al. Study on optimal operation of cascade hydropower stations in electricity market [J]. Power System Technology,2003,27(9):6-9.
- [19] 李志奇, 吕林, 张燃. 计及停电损失期望的微网经济运行
 [J]. 电力系统及其自动化学报, 2013, 25(5):77-82.
 LI Zhiqi, LYU Lin, ZHANG Ran. Economic operation of microgrid considering customer interruption cost [J]. Proceedings of the CSU-EPSA, 2013, 25(5):77-82.
- [20] 分布式电源接入电网技术规定:Q/GDW480—2010[S].北京:中国电力出版社,2010.
 Distributed power supply access grid technical regulations:Q/GDW480—2010[S]. Beijing: China Electric Power Press,2010.
- [21] 马溪原,吴耀文,方华亮,等.采用改进细菌觅食算法的风/ 光/储混合微电网电源优化配置[J].中国电机工程学报, 2011,31(25):17-25.

MA Xiyuan, WU Yaowen, FANG Hualiang, et al. Optimal sizing of hybrid solar-wind distributed generation in an islanded microgrid using improved bacterial foraging algorithm[J]. Proceedings of the CSEE, 2011, 31(25):17-25.

- [22] MAO M Q, JIN P, CHANG L C, et al. Economic analysis and optimal design on microgrid with SS-PVs for industries [J]. IEEE Trans on Sustainable Energy, 2014, 5(4):1328-1336.
- [23] SHAYGAN M, ALIMOHAMMADI A, MANSOURIAN A, et al. Spatial multi-objective optimization approach for land use allocation using NSGA-II[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 906-916.
- [24] 王茜,张粒子. 采用 NSGA-II 混合智能算法的风电场多目标电网规划[J]. 中国电机工程学报,2011,31(19):17-24.
 WANG Qian,ZHANG Lizi. Multi-objective transmission planning associated with wind farms applying NSGA-II hybrid intelligent algorithm[J]. Proceedings of the CSEE,2011,31(19): 17-24.
- [25] 张福民,崔海波,李占凯,等. 基于改进 NSGA-II 算法的微 网交互式多目标优化[J]. 电力系统保护与控制,2018,46 (12):24-31.
 ZHANG Fumin, CUI Haibo, LI Zhankai, et al. Interactive mul-

ti-objective optimization of microgrid based on improved NS-GA-II algorithm [J]. Power System Protection and Control, 2018,46(12):24-31.

 [26] 王先齐,吕智林,汤泽琦.基于分时电价机制的并网型微网 多目标动态优化调度[J].电力系统保护与控制,2017,45
 (4):9-18.

WANG Xianqi, LYU Zhilin, TANG Zeqi. Multiobjective dynamic optimal dispatching of grid-connected microgrid based on TOU power price mechanism[J]. Power System Protection and Control, 2017, 45(4):9-18.

[27] 刘志文,夏文波,刘明波. 基于复合储能的微电网运行模式

平滑切换控制[J]. 电网技术,2013,37(4):906-913.

LIU Zhiwen, XIA Wenbo, LIU Mingbo. Control method and strategy for smooth switching of microgrid operation modes based on complex energy storage[J]. Power System Technology, 2013, 37(4): 906-913.

- [28] 文凌锋,党广宇,田伟,等. 基于多时间尺度风储协同的微 电网能量管理策略研究[J]. 电力工程技术,2018,37(3): 123-128. WEN Lingfeng, DANG Guangyu, TIAN Wei, et al. Research on micro-grid energy management system based on multi-time scale [J]. Electric Power Engineering Technology, 2018, 37
- [29] 肖浩,裴玮,杨艳红,等. 计及电池寿命和经济运行的微电 网储能容量优化[J]. 高电压技术, 2015, 41(10): 3256-

3265.

XIAO Hao, PEI Wei, YANG Yanhong, et al. Energy storage capacity optimization for microgrid considering battery life and economic operation [J]. High Voltage Engineering, 2015, 41 (10):3256-3265.

作者简介:

陈永进(1976),男,博士,高级工程师,从 事电力系统运行与控制相关工作(E-mail:hyperchen@126.com);

吴杰康(1965),男,博士,教授,博士生导 师,研究方向为电力系统运行与控制等; 翁兴航(1983),男,学士,工程师,从事电

力系统运行与控制等相关工作。

陈永进

Optimal sizing of microgrids with wind-hydropower-energy storage

CHEN Yongjin¹, WU Jiekang², WENG Xinghang¹, ZHANG Wenjie², LUO Weiming²

(1. Shaoguan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Shaoguan 512000, China;

2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: Due to the power and voltage constraints of the distribution system, the resource of wind power and hydropower is abandoned in microgrid planning to reduce equipment capacity. Thus, in order to make full use of renewable energy, an optimal configuration of effective and friendly grid-connected microgrid with wind-hydropower and storage is proposed. Firstly, the resource of wind power and hydropower is quantized, and the operation and control strategy of microgrid is determined. Then considering operational constraints of microgrid in distribution system, a multi-objective optimization model is established, with considering the costs of investment and operation, abandoned amount of wind power and hydropower, and annual power generation as objective functions. The model is solved by the non-dominated sorting genetic algorithm (NSGA-II). Finally, the technique for order preference by similarity to an ideal solution (TOPSIS) is adopted to choose the best optimal solution from Pareto solution set based on some indices proposed in this paper. The proposed algorithm is applied to a distribution network in Shaoguan county with multi-scenes, and the result shows the proposed model could improve the utilization of renewable energy and ensure the power quality of the distribution system, and verifies the effectiveness of the model and solution strategy. Keywords: microgrid; optimal sizing; small hydropower; small wind power; energy storage

> (编辑 陈静)

(3):123-128.