基于电压行波极性特征的新能源送出线路保护方案
作者:
中图分类号:

TM771

基金项目:

国家重点研发计划资助项目(2021YFB2401003)


Renewable energy line protection based on voltage traveling wave polarity
Author:
Fund Project:

Science and Technology Project of State Grid Anhui Electric Power Limited Company ;National key research and development program of China (2021YFB2401003).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    新能源经交流线路送出时,由于其弱馈性和受控特性,传统的工频量保护难以适用,而行波保护能够在新能源控制系统介入导致故障特性发生较大变化之前完成故障识别,是目前解决新能源送出线路工频量保护问题的有效途径之一。然而现有的单端行波保护方案无法准确识别区内近端故障和区内末端故障,因此文中分析了区内和区外故障情况下行波的折反射过程,并利用电压行波零模分量与线模分量到达保护安装处的时间差对故障位置进行初判;针对基于时间差难以准确识别的区内近端故障和区内末端故障,进一步挖掘电压行波的极性特征,利用首个反极性的电压行波和故障初始电压行波到达保护安装处的时间差与故障位置的关系来识别区内近端故障,利用前2个电压行波的极性关系来识别区内末端故障。仿真结果表明,该方案能够快速识别区内外故障,并且具有较好的耐过渡电阻能力。

    Abstract:

    Renewable energy has weak feedforward and controlled characteristics,so the traditional industrial frequency protection does not work when renewable energy is sent out through AC transmission line. On the contrary,the traveling wave protection methods can judge the fault before the control system responds,which are one of the effective ways to solve the problem encountered in renewable power system. However,the existing traveling wave protection schemes are limited by the sampling rate,which makes it difficult to accurately identify the internal near-end fault and the internal remote-end fault. To solve this problem,the grid diagram of traveling wave in case of internal and external faults is analyzed at first. Then,the time difference between zero-mode and line-mode is used to judge the fault location. For the near-end fault and remote-end fault which are difficult to be accurately identified based on the time difference,the first reverse polarity traveling wave is used to identify the near-end fault and the polarity of the first two line-mode traveling waves is used to identify the remote-end fault. Simulation results show that the proposed scheme can quickly identify internal and external faults. At the same time,the proposed scheme has good ability to withstand transient resistance.

    参考文献
    [1] 田江南,安源,常德生,等. 碳中和背景下我国新型电力系统构建过程中的问题与建议[J]. 电力勘测设计,2022(7):67-70. TIAN Jiangnan,AN Yuan,CHANG Desheng,et al. Problems and suggestions in the construction of China's new power system under the background of carbon neutrality[J]. Electric Power Survey & Design,2022(7):67-70.
    [2] 汤亮亮. 新型电力系统接地关键技术及展望[J]. 电瓷避雷器,2023(1):1-10. TANG Liangliang. Key technologies review and prospect of grounding in new type power system[J]. Insulators and Surge Arresters,2023(1):1-10.
    [3] 贾宏杰,穆云飞. 新型电力系统中的综合能源关键技术[J]. 全球能源互联网,2023,6(5):445-446. JIA Hongjie,MU Yunfei. Key technologies of integrated energy in new power system[J]. Journal of Global Energy Interconnection,2023,6(5):445-446.
    [4] 陈维江,赵国亮. 以新能源为主体的新型电力系统关键技术和装备[J]. 全球能源互联网,2022,5(1):1. CHEN Weijiang,ZHAO Guoliang. Key technology and equipment of new power system based on renewable energy[J]. Journal of Global Energy Interconnection,2022,5(1):1.
    [5] 国家能源局. 国家能源局发布2022年全国电力工业统计数据[J]. 电力勘测设计,2023(1):24. National Energy Administration. National Energy Administration released statistical data of national electric power industry in 2022[J]. Electric Power Survey & Design,2023(1):24.
    [6] 郑黎明,贾科,毕天姝,等. 海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J]. 电力系统保护与控制,2021,49(20):20-32. ZHENG Liming,JIA Ke,BI Tianshu,et al. AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J]. Power System Protection and Control,2021,49(20):20-32.
    [7] 毕天姝,刘素梅,薛安成,等. 逆变型新能源电源故障暂态特性分析[J]. 中国电机工程学报,2013,33(13):165-171. BI Tianshu,LIU Sumei,XUE Ancheng,et al. Fault characteristics of inverter-interfaced renewable energy sources[J]. Proceedings of the CSEE,2013,33(13):165-171.
    [8] 刘轶,王景钢. 大型光伏电站并网暂态特性研究[J]. 电力系统保护与控制,2021,49(7):182-187. LIU Yi,WANG Jinggang. Analysis of transient characteristics when large-scale photovoltaics are connected to a power system[J]. Power System Protection and Control,2021,49(7):182-187.
    [9] 贾科,杨哲,赵其娟,等. 适用于新能源场站送出线路的高频突变量距离保护[J]. 电网技术,2019,43(9):3271-3280. JIA Ke,YANG Zhe,ZHAO Qijuan,et al. High-frequency fault component based distance protection for transmission lines connected to renewable energy power plants[J]. Power System Technology,2019,43(9):3271-3280.
    [10] 郑黎明. 大规模新能源送出线路纵联保护新原理研究[D]. 北京:华北电力大学,2022. ZHENG Liming. Study on novel pilot protection of transmission line with large-scale renewable energy power plants[D]. Beijing:North China Electric Power University,2022.
    [11] 林湘宁,刘琦,范理想,等. 基于相关分析的多端直流电网线路纵联保护新原理[J]. 电力系统保护与控制,2020,48(13):45-55. LIN Xiangning,LIU Qi,FAN Lixiang,et al. A novel pilot protection for VSC-MTDC based on correlation analysis[J]. Power System Protection and Control,2020,48(13):45-55.
    [12] 薛士敏,陈硕,顾诚,等. 一种基于暂态量的柔性直流系统保护及雷击识别方法[J]. 电力系统保护与控制,2022,50(9):45-53. XUE Shimin,CHEN Shuo,GU Cheng,et al. A method for protection and lightning identification in a flexible DC system based on transient quantities[J]. Power System Protection and Control,2022,50(9):45-53.
    [13] 张晨浩,宋国兵,董新洲,等. 利用波前广义Logistic函数拟合的直流输电线路快速保护原理[J]. 中国电机工程学报,2019,39(11):3168-3176. ZHANG Chenhao,SONG Guobing,DONG Xinzhou,et al. Principle of high speed protection for DC transmission line using wave front generalized Logistic function fitting[J]. Proceedings of the CSEE,2019,39(11):3168-3176.
    [14] 胡冰颖,李梅. 基于零模线模时差的配电网双端行波故障测距[J]. 电力工程技术,2021,40(2):114-120. HU Bingying,LI Mei. Double ended traveling wave fault location in distribution network based on the time difference of zero-mode and line-mode[J]. Electric Power Engineering Technology,2021,40(2):114-120.
    [15] 董杏丽,葛耀中,董新洲,等. 基于小波变换的行波测距式距离保护原理的研究[J]. 电网技术,2001,25(7):9-13. DONG Xingli,GE Yaozhong,DONG Xinzhou,et al. Wavelet transform based distance protection scheme with travelling wave fault location[J]. Power System Technology,2001,25(7):9-13.
    [16] 蔡俊强,孙二双,杨子力. 带T接分支的电缆-架空线混合线路双端行波故障定位[J]. 电工技术,2018(21):37-40,43. CAI Junqiang,SUN Ershuang,YANG Zili. Double terminal traveling wave fault location for cable and overhead hybrid distribution lines with T branches[J]. Electric Engineering,2018(21):37-40,43.
    [17] 谢李为,曾祥君,柳祎璇. 基于VMD-Hilbert变换的故障行波定位研究[J]. 电力系统保护与控制,2018,46(16):75-81. XIE Liwei,ZENG Xiangjun,LIU Yixuan. Research on fault traveling wave location based on VMD-Hilbert transform[J]. Power System Protection and Control,2018,46(16):75-81.
    [18] 邓丰,黄懿菲,祖亚瑞,等. 基于行波全波形主频分量衰减特性的高压输电线路快速保护方法[J]. 中国电机工程学报,2022,42(24):8864-8876. DENG Feng,HUANG Yifei,ZU Yarui,et al. High-speed protection method for transmission line based on the dominant frequency component attenuation characteristics of traveling-wave full waveform[J]. Proceedings of the CSEE,2022,42(24):8864-8876.
    [19] 郑涛,宋祥艳. 适用于多端直流电网的电压极性比较式行波保护方案[J]. 电网技术,2022,46(12):4690-4699. ZHENG Tao,SONG Xiangyan. Traveling wave protection scheme of voltage polarity comparison formula for multi-terminal DC power network[J]. Power System Technology,2022,46(12):4690-4699.
    [20] 葛耀中. 新型继电保护与故障测距原理与技术[M]. 西安:西安交通大学出版社,2007. GE Yaozhogn. Principle and technology of new relay protection and fault location[M]. Xi'an:Xi'an Jiaotong University Press, 2007.
    [21] 郑涛,宋祥艳. 基于故障暂态行波高低频能量比值的交流输电线路快速保护方案[J]. 电网技术,2022,46(12):4616-4629. ZHENG Tao,SONG Xiangyan. Fast protection scheme for AC transmission lines based on ratio of high and low frequency energy of transient traveling waves[J]. Power System Technology,2022,46(12):4616-4629.
    [22] 董长虹. Matlab小波分析工具箱原理与应用[M]. 北京:国防工业出版社,2004. DONG Changhong. Matlab theory and application of wavelet analysis toolbox[M]. Beijing:National Defense Industry Press, 2004.
    [23] 宋国兵,靳东晖,靳幸福,等. CSC-HVDC输电线路单端行 波自动故障定位方法[J]. 高电压技术,2014,40(2):588-596. SONG Guobing,JIN Donghui,JIN Xingfu,et al. Automatic fault location method for traveling wave on HVDC transmission line using single-terminal data[J]. High Voltage Engineering,2014,40(2):588-596.
    [24] 郑玉平,司鑫尧,吴通华,等. 特高压半波长交流输电线路的行波保护[J]. 电力系统自动化,2020,44(18):124-131. ZHENG Yuping,SI Xinyao,WU Tonghua,et al. Travelling wave protection of UHV half-wavelength AC transmission lines[J]. Automation of Electric Power Systems,2020,44(18):124-131.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

叶远波,章昊,王同文,宋祥艳,苏毅,郑涛.基于电压行波极性特征的新能源送出线路保护方案[J].电力工程技术,2024,43(1):127-135

复制
分享
文章指标
  • 点击次数:247
  • 下载次数: 4358
  • HTML阅读次数: 1518
  • 引用次数: 0
历史
  • 收稿日期:2023-08-21
  • 最后修改日期:2023-11-12
  • 录用日期:2023-06-12
  • 在线发布日期: 2024-01-19
  • 出版日期: 2024-01-28
文章二维码