面向不同电流工况的锂离子电池改进EECM研究
作者:
中图分类号:

TM912

基金项目:

国家自然科学基金资助项目(52177217,52037006);北京市自然科学基金资助项目(3212031)


Improved EECM for lithium-ion batteries under different current conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    锂离子电池是新能源汽车动力系统的核心,基于模型的电池管理系统(battery management system,BMS)是保证电池性能充分发挥的关键。然而现有BMS主要采用等效电路模型(equivalent circuit model,ECM),尚未考虑放电倍率对可用容量的影响机制,导致模型在不同放电倍率下以及低荷电状态(state of charge,SOC)区域会存在明显的端电压仿真误差,影响算法精度;尤其是BMS无法准确估计电池放电截止条件,剩余放电电量(remaining discharge capacity,RDC)估计误差大,可能导致电池电压骤降甚至整车抛锚等严重后果。针对以上问题,文中以考虑内部扩散机制的扩展等效电路模型(extended equivalent circuit model,EECM)为基础,对不同倍率的放电电压容量增量(incremental capacity,IC)曲线进行对比分析,利用能斯特方程构造不同放电倍率下的容量-开路电压曲线,提出改进的EECM。所提改进EECM在不同电流倍率和动态工况下的端电压仿真误差均小于传统ECM和EECM,可以提高RDC估计的准确性,有应用于实际BMS的潜力。

    Abstract:

    Li-ion batteries are at the core of new energy vehicle powertrains. The model-based battery management system (BMS) is the key to ensure the full play of battery performance. However,the existing BMS mainly adopts the equivalent circuit model (ECM),without considering the impact of discharge rate on available capacity. Therefore,the model will have significant terminal voltage simulation errors in different discharge rates and low state of charge (SOC) regions,which affects the accuracy of BMS. BMS cannot accurately estimate the battery discharge cut-off condition,and the estimation error of residual discharge capacity (RDC) is large,which may lead to serious consequences such as battery voltage sag and vehicle breakdown. To solve the above problems,based on the extended equivalent circuit model (EECM) considering the internal diffusion mechanism,the incremental capacity (IC) curves of discharge voltage at different rates are compared and analyzed. Nernst equation is used to construct capacity open circuit voltage curves at different discharge rates,and an improved EECM is proposed. The simulation errors of the improved EECM for terminal voltage under different current rates and dynamic conditions are smaller than traditional ECM and EECM. Improved EECM can improve the accuracy of RDC estimation and have the potential to be applied in practical BMS.

    参考文献
    [1] WANG Y J,TIAN J Q,SUN Z D,et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews,2020,131:110015.
    [2] HU X S,FENG F,LIU K L,et al. State estimation for advanced battery management:key challenges and future trends[J]. Renewable and Sustainable Energy Reviews,2019,114:109334.
    [3] 申永鹏,孙嵩楠,刘东奇,等. 车载混合储能系统Symlets小波变换能量管理方法[J]. 电力系统保护与控制,2022,50(6):74-81. SHEN Yongpeng,SUN Songnan,LIU Dongqi,et al. Symlets wavelet transform energy management method for a vehicle-mounted hybrid energy storage system[J]. Power System Protection and Control,2022,50(6):74-81.
    [4] LIU K L,LI K,PENG Q,et al. A brief review on key technologies in the battery management system of electric vehicles[J]. Frontiers of Mechanical Engineering,2019,14(1):47-64.
    [5] 蔡涛,张钊诚,袁奥特,等. 锂离子电池储能安全管理中的机器学习方法综述[J]. 电力系统保护与控制,2022,50(24):178-187. CAI Tao,ZHANG Zhaocheng,YUAN Aote,et al. Review of machine learning for safety management of li-ion battery energy storage[J]. Power System Protection and Control,2022,50(24):178-187.
    [6] 杜生鑫,金阳. 锂离子电池储能舱风冷散热数值模拟与优化[J]. 电力工程技术,2022,41(6):58-64. DU Shengxin,JIN Yang. Numerical simulation and optimization of air cooling heat dissipation of lithium-ion battery storage cabin[J]. Electric Power Engineering Technology,2022,41(6):58-64.
    [7] 吕超,张爽,朱世怀,等. 储能锂离子电池包强制风冷系统热仿真分析与优化[J]. 电力系统保护与控制,2021,49(12):48-55. LYU Chao,ZHANG Shuang,ZHU Shihuai,et al. Thermal simulation analysis and optimization of forced air cooling system for energy storage lithium-ion battery pack[J]. Power System Protection and Control,2021,49(12):48-55.
    [8] LAI X,HUANG Y F,GU H H,et al. Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects[J]. Energy,2022,238:121754.
    [9] 夏向阳,邓子豪,张嘉诚,等. 基于动力锂离子电池健康状态的全寿命周期优化充电策略[J]. 电力科学与技术学报,2022,37(6):17-24. XIA Xiangyang,DENG Zihao,ZHANG Jiacheng,et al. Life cycle optimal charging strategy based on the SOH of power lithium ion battery[J]. Journal of Electric Power Science and Technology,2022,37(6):17-24.
    [10] HUA X,ZHANG C,OFFER G. Finding a better fit for lithium ion batteries:a simple,novel,load dependent,modified equivalent circuit model and parameterization method[J]. Journal of Power Sources,2021,484:229117.
    [11] XU L,LIN X K,XIE Y,et al. Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification[J]. Energy Storage Materials,2022,45:952-968.
    [12] NEMES R,CIORNEI S,RUBA M,et al. Modeling and simulation of first-order li-Ion battery cell with experimental validation[C]//2019 8th International Conference on Modern Power Systems (MPS). Cluj-Napoca,Cluj,Romania. IEEE,2019:1-6.
    [13] TRAN M K,MEVAWALA A,PANCHAL S,et al. Effect of integrating the hysteresis component to the equivalent circuit model of Lithium-ion battery for dynamic and non-dynamic applications[J]. Journal of Energy Storage,2020,32:101785.
    [14] BAIRWA B L,PAREEK K,HAMPANNAVAR S K. Investigation on lithium ion battery equivalent circuit models for dynamic load profiles[J]. Energy Storage,2021,3(2):e231.
    [15] NOURA N,BOULON L,JEMEÏ S. A review of battery state of health estimation methods:hybrid electric vehicle challenges[J]. World Electric Vehicle Journal,2020,11(4):66.
    [16] ZHANG C,ALLAFI W,DINH Q,et al. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy,2018,142:678-688.
    [17] OUYANG M G,LIU G M,LU L G,et al. Enhancing the estimation accuracy in low state-of-charge area:a novel onboard battery model through surface state of charge determination[J]. Journal of Power Sources,2014,270:221-237.
    [18] BALASINGAM B,AHMED M,PATTIPATI K. Battery management systems—challenges and some solutions[J]. Energies,2020,13(11):2825.
    [19] TRAN M K,MATHEW M,JANHUNEN S,et al. A comprehensive equivalent circuit model for lithium-ion batteries,incorporating the effects of state of health,state of charge,and temperature on model parameters[J]. Journal of Energy Storage,2021,43:103252.
    [20] SHEN W X,CHAN C C,LO E W C,et al. Estimation of battery available capacity under variable discharge currents[J]. Journal of Power Sources,2002,103(2):180-187.
    [21] DOERFFEL D,ABU SHARKH S. A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries[J]. Journal of Power Sources,2006,155(2):395-400.
    [22] ZHENG Y J,GAO W K,HAN X B,et al. An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties[J]. Journal of Energy Storage,2019,24:100745.
    [23] LI Z Y,SHI X H,SHI M Y,et al. Investigation on the impact of the HPPC profile on the battery ECM parameters' offline identification[C]//2020 Asia Energy and Electrical Engineering Symposium (AEEES). Chengdu,China. IEEE,2020:753-757.
    [24] JIANG B,DAI H F,WEI X Z. Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition[J]. Applied Energy,2020,269: 115074.
    [25] AIELLO O. Electromagnetic susceptibility of battery management systems' ICs for electric vehicles:experimental study[J]. Electronics,2020,9(3):510.
    [26] LI X Y,YUAN C G,LI X H,et al. State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy,2020,190:116467.
    [27] CHANG C,WANG Q Y,JIANG J C,et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
    [28] SHE C Q,WANG Z P,SUN F C,et al. Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network[J]. IEEE Transactions on Industrial Informatics,2020,16(5):3345-3354.
    [29] XIONG R,ZHANG Y Z,HE H W,et al. A double-scale,particle-filtering,energy state prediction algorithm for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics,2018,65(2):1526-1538.
    [30] CHEN Y J,YANG X L,LUO D,et al. Remaining available energy prediction for lithium-ion batteries considering electrothermal effect and energy conversion efficiency[J]. Journal of Energy Storage,2021,40:102728.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张志行,韩雪冰,冯旭宁,卢兰光,王贺武,欧阳明高.面向不同电流工况的锂离子电池改进EECM研究[J].电力工程技术,2023,42(4):2-12

复制
分享
文章指标
  • 点击次数:741
  • 下载次数: 1887
  • HTML阅读次数: 2307
  • 引用次数: 0
历史
  • 收稿日期:2022-12-21
  • 最后修改日期:2023-03-09
  • 录用日期:2023-03-10
  • 在线发布日期: 2023-07-20
  • 出版日期: 2023-07-28
文章二维码