基于最小范数的系统侧谐波变阻抗求解技术
作者:
基金项目:

国家自然科学基金资助项目(52277113,51877141)


Solution technology of system side harmonic variable impedance based on minimum norm
Author:
Fund Project:

Project Supported by National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    准确计算系统侧谐波阻抗对新型电力系统的安全稳定运行有至关重要的意义。在现有谐波阻抗估计算法中,通常假设系统侧谐波阻抗在测量周期中恒定不变。然而,系统侧电压会随着电网运行方式或负荷端大电源用户的接入而发生变化,从而导致系统侧谐波阻抗大小呈现波动的状态。但系统侧谐波阻抗在相邻采样时间间隔内变化并不大,基于此,文中提出一种新的非干预式系统侧谐波变阻抗求解技术,以测量周期内相邻采样时间间隔谐波阻抗二阶变化量和电压二阶变化量的范数为目标函数,通过最小化目标函数求解系统侧谐波阻抗。经过仿真和实际案例分析,验证了该方法在较强背景谐波和用户侧谐波阻抗并非远大于系统侧谐波阻抗条件下的准确性和可靠性。

    Abstract:

    To calculate the harmonic impedance on the system side is crucial for the safe and stable operation of the new power system. Existing algorithms for harmonic impedance estimation usually assume that the harmonic impedance on the system side is constant during the measurement period. However, the voltage on the system side always changes according to the working mode of the power grid or access of large power load demand, resulting in fluctuations of the harmonic impedance on the system side. Luckly, the harmonic impedance on the system side does not change much in the adjacent sampling time interval. On this basis, the paper proposes a new non-intervention solution for the variable harmonic impedance on the system side. In this method, the second-order change of the harmonic impedance and the second-order change of voltage in the adjacent sampling time interval are taken as the objective function. The harmonic impedance on the system side is solved by minimizing the target function. The proposed method is proved to be accurate and reliable by simulation and practical analysis, especially in the condition that the strong background harmonic or user-side harmonic impedance is not much stronger than the harmonic impedance on the system side.

    参考文献
    [1] 金祖洋, 杨洪耕, 潘爱强. 多直流馈入城市输电网谐波放大特性分析[J]. 电网技术, 2016, 40(12):3857-3864. JIN Zuyang, YANG Honggeng, PAN Aiqiang. Analysis on harmonic amplification characteristics of urban transmission network with multi-infeed DC system[J]. Power System Technology, 2016, 40(12):3857-3864.
    [2] SAFARGHOLI F, MALEKIAN K, SCHUFFT W. On the dominant harmonic source identification-part I:review of methods[J]. IEEE Transactions on Power Delivery, 2018, 33(3):1268-1277.
    [3] SAFARGHOLI F, MALEKIAN K, SCHUFFT W. On the dominant harmonic source identification-part II:application and interpretation of methods[J]. IEEE Transactions on Power Delivery, 2018, 33(3):1278-1287.
    [4] XU F W, YANG H G, ZHAO J S, et al. Study on constraints for harmonic source determination using active power direction[J]. IEEE Transactions on Power Delivery, 2018, 33(6):2683-2692.
    [5] 吴俊, 毛南平, 王行亚, 等. 基于波动和相关性复线性回归的系统谐波阻抗计算方法[J]. 电力电容器与无功补偿, 2021, 42(1):114-119. WU Jun, MAO Nanping, WANG Hangya, et al. Harmonic impedance calculation method of system based on complex linear regression of fluctuation and correlation[J]. Power Capacitor & Reactive Power Compensation, 2021, 42(1):114-119.
    [6] 缪江豫. 基于波动量法的用户侧谐波发射水平评估方法研究[J]. 河南科技, 2018(14):56-58. MIAO Jiangyu. Assessing the harmonic emission level based on fluctuation method methodological research[J]. Henan Science and Technology, 2018(14):56-58.
    [7] 王炤宇, 随慧斌. 谐波源责任划分技术的工程应用[J]. 电力系统保护与控制, 2021, 49(14):140-148. WANG Zhaoyu, SUI Huibin. Engineering application of harmonic source responsibility division technology[J]. Power System Protection and Control, 2021, 49(14):140-148.
    [8] 吕洋. 电网谐波阻抗测量[D]. 杭州:浙江大学, 2010. LYU Yang. Measurement of power system harmonic impedance[D]. Hangzhou:Zhejiang University, 2010.
    [9] XU Y H, HUANG S, LIU Y Y. Partial least-squares regression based harmonic emission level assessing at the point of common coupling[C]//2006 International Conference on Power System Technology. Chongqing, China. IEEE, 2007:1-5.
    [10] 林顺富, 李育坤, 李寅, 等. 基于混合寻优算法及分离一致性判断的系统谐波阻抗估计[J]. 电力系统保护与控制, 2022, 50(20):106-116. LIN Shunfu, LI Yukun, LI Yin, et al. Harmonic impedance estimation based on a hybrid optimization algorithm and separation consistency screening[J]. Power System Protection and Control, 2022, 50(20):106-116.
    [11] 王行亚, 肖先勇, 吴俊, 等. 基于线性度校验的二元线性回归系统谐波阻抗估计方法[J]. 中国电机工程学报, 2020, 40(9):2826-2835. WANG Hangya, XIAO Xianyong, WU Jun, et al. Utility harmonic impedance estimation based on binary linear regression with linearity calibration[J]. Proceedings of the CSEE, 2020, 40(9):2826-2835.
    [12] 杜文龙, 杨洪耕, 马晓阳. 基于快速独立分量分析的谐波间谐波频谱分离算法[J]. 电力系统自动化, 2020, 44(13):115-122. DU Wenlong, YANG Honggeng, MA Xiaoyang. Harmonic/interharmonic spectrum separation algorithm based on fast independent component analysis[J]. Automation of Electric Power Systems, 2020, 44(13):115-122.
    [13] 陈飞宇, 肖先勇, 汪颖. 采用稳健独立分量分析的谐波发射水平评估方法[J]. 电网技术, 2020, 44(8):3007-3013. CHEN Feiyu, XIAO Xianyong, WANG Ying. A method for harmonic emission level assessment based on robust independent component analysis[J]. Power System Technology, 2020, 44(8):3007-3013.
    [14] 郭振涛, 迟长春, 陈俊杰. 基于独立分量分析的谐波检测方法研究[J]. 机电信息, 2018(9):53, 55. GUO Zhentao, CHI Changchun, CHEN Junjie. Research on harmonic detection method based on independent component analysis[J]. Mechanical and Electrical Information, 2018(9):53, 55.
    [15] 夏焰坤, 唐文张, 林欣懿. 基于LS-SVM的谐波阻抗估计方法[J]. 电力系统及其自动化学报, 2022, 34(2):94-99. XIA Yankun, TANG Wenzhang, LIN Xinyi. Harmonic impedance estimation method based on least squares support vector machine[J]. Proceedings of the CSU-EPSA, 2022, 34(2):94-99.
    [16] 雷达, 常潇, 刘子腾, 等. 基于DBSCAN聚类和数据筛选的系统谐波阻抗估算[J]. 电测与仪表, 2022, 59(1):93-98. LEI Da, CHANG Xiao, LIU Ziteng, et al. Estimation of system harmonic impedance based on DBSCAN clustering and data filtering[J]. Electrical Measurement & Instrumentation, 2022, 59(1):93-98.
    [17] 刘子腾, 徐永海, 陶顺. 基于SHIBSS方法和数据优选的系统侧谐波阻抗估算方法[J]. 电力自动化设备, 2021, 41(2):193-199. LIU Ziteng, XU Yonghai, TAO Shun. Estimation method of harmonic impedance on system side based on SHIBSS method and data optimization[J]. Electric Power Automation Equipment, 2021, 41(2):193-199.
    [18] 颜昕昱, 钟良亮, 林顺富. 基于粒子群独立成分分析的系统谐波阻抗估计[J]. 电力系统及其自动化学报, 2020, 32(11):81-87. YAN Xinyu, ZHONG Liangliang, LIN Shunfu. Utility harmonic impedance estimation based on independent component analysis improved by particle swarm optimization[J]. Proceedings of the CSU-EPSA, 2020, 32(11):81-87.
    [19] 江友华, 刘子瑜, 张煜, 等. 基于非参数贝叶斯谐波阻抗估计的谐波责任区分[J]. 浙江电力, 2021, 40(3):59-65. JIANG Youhua, LIU Ziyu, ZHANG Yu, et al. Division of harmonic responsibility based on nonparametric Bayesian harmonic impedance estimation[J]. Zhejiang Electric Power, 2021, 40(3):59-65.
    [20] 徐方维, 王川, 郭凯, 等. 基于无相位实测数据的系统侧谐波阻抗估计方法改进[J]. 中国电机工程学报, 2021, 41(9):3149-3158. XU Fangwei, WANG Chuan, GUO Kai, et al. An improved utility harmonic impedance estimation method based on measurement data without phase angle[J]. Proceedings of the CSEE, 2021, 41(9):3149-3158.
    [21] 徐方维, 郑鸿儒, 杨洪耕, 等. 基于无相位实测数据的系统侧谐波阻抗估计方法[J]. 电力系统自动化, 2019, 43(21):170-176, 212. XU Fangwei, ZHENG Hongru, YANG Honggeng, et al. Harmonic impedance estimation method on system side based on measurement data without phase angle[J]. Automation of Electric Power Systems, 2019, 43(21):170-176, 212.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐方维,曾雪,王川,郑鸿儒.基于最小范数的系统侧谐波变阻抗求解技术[J].电力工程技术,2023,42(6):110-116

复制
分享
文章指标
  • 点击次数:400
  • 下载次数: 1132
  • HTML阅读次数: 1314
  • 引用次数: 0
历史
  • 收稿日期:2023-06-21
  • 最后修改日期:2023-08-20
  • 录用日期:2023-01-28
  • 在线发布日期: 2023-11-23
  • 出版日期: 2023-11-28
文章二维码