基于改进DaNN的综合能源系统多能负荷预测
作者:
中图分类号:

TM715

基金项目:

国家电网有限公司总部科技项目“绿色生态乡镇综合能源系统多能源协同规划、运行优化关键技术研究与示范”(52182019000K)


Multiple energy load forecasting of integrated energy system based on improved DaNN
Author:
Fund Project:

Science and technology project of SGCC headquarters (52182019000k)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着能源革命的推进及双碳目标的提出,综合能源系统越发受到广大研究者的重视,对综合能源系统进行高效的规划和控制离不开精准的多能负荷预测。基于上述需求,引入迁移学习理论,提出一种改进领域自适应神经网络(DaNN)负荷预测模型对综合能源系统中的冷、热、电负荷进行统一建模与预测。首先,通过历史数据分别构筑冷、热、电负荷特征图,随后输入改进DaNN的参数共享卷积层和全连接层;其次,基于冷、热、电负荷联合预测的特点改进传统神经网络的损失函数,加入最大均值差异指标,并优化训练模型;最后,通过3个各自独立的全连接层分别输出冷、热、电负荷的预测值。通过采用实际算例验证并与基准模型对比可知,所提改进DaNN模型能够有效提高综合能源多能负荷预测精度。

    Abstract:

    With the advancement of energy revolution and the proposal of two-carbon goal,the integrated energy system has been paid more and more attention by many researchers. Accurate multiple load forecasting is indispensable for efficient and correct scheduling and control of integrated energy system. Based on the above requirement,the transfer learning theory is introduced,and an improved domain adaptive neural network (DaNN) load forecasting model is proposed to unified model and forecast the cooling,heating and electrical load in the integrated energy system. Firstly,the feature pictures of multiple loads are constructed by historical data and be input into the parameter sharing layer of improved DaNN. Secondly,based on the characteristics of combined forecasting of multiple loads,the loss function of traditional neural network is improved. The maximum mean difference (MMD) index is added,and the training model is optimized. Finally,the forecast values of cooling,heating and electrical loads are output through three independent full connection layers. Through the actual case verification and comparison with the traditional model,it proves that improved DaNN model effectively improves the accuracy of multiple energy load forecasting of integrated energy system.

    参考文献
    [1] 辛保安. 为实现"碳达峰、碳中和"目标贡献智慧和力量[N/OL]. 人民网, (2021-02-23)[2021-03-28]. http://finance.people.com.cn/n1/2021/0223/c1004-32034201.html. XIN Bao'an. Contribute wisdom and strength to achieve the goal of ‘carbon peak, carbon neutral’[N/OL]. People's daily, (2021-02-23)[2021-03-28]. http://finance.people.com.cn/n1/2021/0223/c1004-32034201.html.
    [2] WANG Y L, WANG Y D, HUANG Y J, et al. Optimal scheduling of the regional integrated energy system considering economy and environment[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4):1939-1949.
    [3] 张宇帆, 艾芊, 林琳, 等. 基于深度长短时记忆网络的区域级超短期负荷预测方法[J]. 电网技术, 2019, 43(6):1884-1892. ZHANG Yufan, AI Qian, LIN Lin, et al. A very short-term load forecasting method based on deep LSTM RNN at zone level[J]. Power System Technology, 2019, 43(6):1884-1892.
    [4] 李焱, 贾雅君, 李磊, 等. 基于随机森林算法的短期电力负荷预测[J]. 电力系统保护与控制, 2020, 48(21):117-124. LI Yan, JIA Yajun, LI Lei, et al. Short term power load forecasting based on a stochastic forest algorithm[J]. Power System Protection and Control, 2020, 48(21):117-124.
    [5] 黄青平, 邹晓明, 刘楚群, 等. 基于小波分解与随机森林的短期负荷预测[J]. 电力信息与通信技术, 2019, 17(9):24-29. HUANG Qingping, ZOU Xiaoming, LIU Chuqun, et al. Short term load forecasting based on wavelet decomposition and random forest[J]. Electric Power Information and Communication Technology, 2019, 17(9):24-29.
    [6] 乡立, 段炼, 陈菁, 等. 基于WEKPCA与深度学习的短期电力负荷预测[J]. 电力信息与通信技术, 2020, 18(10):34-41. XIANG Li, DUAN Lian, CHEN Jing, et al. Short-term power load forecasting based on WEKPCA and deep learning[J]. Electric Power Information and Communication Technology, 2020, 18(10):34-41.
    [7] 邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术, 2020, 44(2):593-602. DENG Daiyu, LI Jian, ZHANG Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44(2):593-602.
    [8] 蔡舒平, 闫静, 刘国海, 等. 基于Fisher信息和在线SVR的智能电网气象敏感负荷预测动态建模技术[J]. 中国电机工程学报, 2020, 40(11):3441-3452. CAI Shuping, YAN Jing, LIU Guohai, et al. A dynamic modeling methodology based on Fisher information and on-line SVR for smart grids weather sensitive load forecasting[J]. Proceedings of the CSEE, 2020, 40(11):3441-3452.
    [9] SINGH P, DWIVEDI P. A novel hybrid model based on neural network and multi-objective optimization for effective load forecast[J]. Energy, 2019, 182:606-622.
    [10] 石天, 梅飞, 陆继翔, 等. 基于PSR和DBN的超短期母线净负荷预测[J]. 电力工程技术, 2020, 39(1):178-183. SHI Tian, MEI Fei, LU Jixiang, et al. Ultra-short-term bus net load forecasting based on phase space reconstruction and deep belief network[J]. Electric Power Engineering Technology, 2020, 39(1):178-183.
    [11] HAO Z H, LIU G X, ZHANG H Y. Correlation filter-based visual tracking via adaptive weighted CNN features fusion[J]. IET Image Processing, 2018, 12(8):1423-1431.
    [12] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8):131-137. LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8):131-137.
    [13] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12):4370-4376. ZHAO Bing, WANG Zengping, JI Weijia, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12):4370-4376.
    [14] 栗然, 孙帆, 丁星, 等. 考虑多能时空耦合的用户级综合能源系统超短期负荷预测方法[J]. 电网技术, 2020, 44(11):4121-4134. LI Ran, SUN Fan, DING Xing, et al. Ultra short-term load forecasting for user-level integrated energy system considering multi-energy spatio-temporal coupling[J]. Power System Technology, 2020, 44(11):4121-4134.
    [15] 马建鹏, 龚文杰, 张智晟. 基于Copula理论与KPCA-GRNN结合的区域综合能源系统多元负荷短期预测模型[J]. 电工电能新技术, 2020, 39(3):24-31. MA Jianpeng, GONG Wenjie, ZHANG Zhisheng. Short-term multiple load prediction model for regional integrated energy system based on Copula theory and KPCA-GRNN[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(3):24-31.
    [16] 田浩含, 张智晟, 于道林. 基于改进LSTM的区域综合能源系统多元负荷短期预测研究[J]. 电力系统及其自动化学报, 2021, 33(9):130-137. TIAN Haohan, ZHANG Zhisheng, YU Daolin. Load short-term forecasting model of regional integrated energy system based on improved LSTM[J]. Proceedings of the CSU-EPSA, 2021, 33(9):130-137.
    [17] TAN Z F, DE G, LI M L, et al. Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine[J]. Journal of Cleaner Production, 2020, 248: 119252.
    [18] 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5):63-70. SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of Electric Power Systems, 2021, 45(5):63-70.
    [19] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
    [20] WANG Jindong. Everything about transfer learning and domain adaptation[EB/OL].[2021-06-02]. https://github.com/jindongwang/transferlearning.
    [21] GHIFARY M, KLEIJN W B, ZHANG M. Domain adaptive neural networks for object recognition[C]//Pacific Rim Interna-tional Conference on Artificial Intelligence. Gold Coast, QLD, Australia:Springer International Publishing, 2014:898-904.
    [22] Open EI DOE open data[DB/OL].[2021-06-02]. https://openei.org/doe-opendata/dataset.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何桂雄,金璐,李克成,何伟,闫华光.基于改进DaNN的综合能源系统多能负荷预测[J].电力工程技术,2021,40(6):25-33

复制
分享
文章指标
  • 点击次数:782
  • 下载次数: 1572
  • HTML阅读次数: 3152
  • 引用次数: 0
历史
  • 收稿日期:2021-06-02
  • 最后修改日期:2021-08-10
  • 录用日期:2021-06-11
  • 在线发布日期: 2021-12-06
  • 出版日期: 2021-11-28
文章二维码