基于BiGRU-PLE的电冷热负荷短期联合预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家重点研发计划资助项目(2022YFE0140600)


BiGRU-PLE based short-term joint forecasting of electric, cooling and heat loads
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确的电、冷、热负荷预测是综合能源系统运行调度、能量管理的重要前提和基础。利用多元负荷之间存在能源耦合的特点,文中构建一种基于双向门控循环单元(bidirectional gated recurrent unit, BiGRU)以及渐进分层提取(progressive layered extraction, PLE)网络结构的多元负荷联合预测模型。首先,通过最大信息系数筛选相关性较高的气象特征作为模型输入特征;其次,利用BiGRU网络对综合能源系统下的多元负荷时间序列进行时间特征提取,并以此重构数据;然后,针对不同能源相互耦合的特点,提出改进的PLE网络结构,通过多级共享特征提取层,达到从复杂多维数据提取耦合特征的目的;最后,通过改变子任务塔模块结构参数,差异化选择耦合特征信息,输出得到多元负荷预测结果。实际算例结果表明,文中采用的最大信息系数筛选方法相比传统Pearson系数筛选方法更贴合气象数据的特征选择,且提出的BiGRU-PLE多元负荷联合预测模型相比单任务模型能够降低预测误差超5%,相比普通多任务模型能够降低预测误差超3%。

    Abstract:

    Accurate forecasting of electric, cooling and heating loads is an important prerequisite and foundation for the operation scheduling and energy management of integrated energy systems. Leveraging the energy coupling characteristics between multivariate load, this paper constructs a joint prediction model for multivariate load based on bidirectional gated recurrent units (BiGRU) and a progressive layered extraction (PLE) network architecture. Firstly, the meteorological features with high correlation are screened as input features of the model through the maximum information coefficient. Then, the BiGRU network is used to extract the temporal features of the multivariate load time series under the integrated energy system and reconstruct the data in this way. Secondly, for the characteristics of different energy sources that are coupled with each other, the improved progressive hierarchical extraction network structure is proposed, and the coupling features are extracted from the complex and multidimensional data through the multilevel sharing of the feature extraction layer. Finally, by changing the structural parameters of the sub-task tower module, the coupled feature information is differentially fused, and the multiple load prediction results are obtained. The actual example results show that the maximum information coefficient screening method adopted in the article is more suitable for feature selection of meteorological data than the traditional Pearson coefficient screening method, and the proposed BiGRU-PLE multivariate load prediction model can reduce the prediction error by more than 5% compared with the single-task model, and by more than 3% compared with the common multitask model.

    参考文献
    相似文献
    引证文献
引用本文

徐怡豪,梅飞,陆嘉华.基于BiGRU-PLE的电冷热负荷短期联合预测[J].电力工程技术,2026,45(2):110-120,149. XU Yihao, MEI Fei, LU Jiahua. BiGRU-PLE based short-term joint forecasting of electric, cooling and heat loads[J]. Electric Power Engineering Technology,2026,45(2):110-120,149.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-13
  • 最后修改日期:2025-09-21
  • 在线发布日期: 2026-02-12
  • 出版日期: 2026-02-28
文章二维码