油纸绝缘缺陷多源局放超声混合脉冲识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM854

基金项目:

安徽省自然科学基金资助项目(2508085ME114);国家电网有限公司科技项目(SGAHBZ00TKJS2400327)


Multi-source partial discharge ultrasonic hybrid pulse identification method for oil-paper insulation defects
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统模式识别分类器在变压器油纸绝缘缺陷局放超声混合脉冲识别中存在漏检的问题,文中提出一种基于改进YOLOv8的多源局放诊断模型。首先,采集3种变压器典型缺陷超声脉冲信号,使用连续小波变换(continuous wavelet transform, CWT)将单源脉冲映射为二维时频谱图并进行灰度化处理,在保留图谱时频特征相对强度信息下创建高对比度效果。然后,使用基于梯度惩罚生成对抗网络(Wasserstein gengrative adversarial network with gradient penalty, WGAN-GP)的数据增强方法对样本库进行扩充,解决超声脉冲缺陷训练用样本类间不平衡问题,并借助t-分布随机邻域嵌入(t-distributed stochastic neighbor embedding, t-SNE)算法对部分生成样本进行降维分析,剔除低质量生成样本,保证生成样本数据集质量。最后,引入全局注意力机制(global attention mechanism, GAM)对目标检测算法YOLOv8进行改进,提出适用于变压器局放超声时频图谱的多源局放脉冲诊断模型,使用该模型对多源局放测试集进行识别,各类型局放平均识别准确率可达95.67%,验证了文中方法的有效性。

    Abstract:

    To address the issue of leakage in traditional pattern recognition classifiers when identifying transformer oil-paper insulation defects within partial discharge ultrasonic mixed pulses, a multi-source partial discharge diagnostic model based on an improved version of YOLOv8 is proposed. Firstly, three typical defective ultrasonic pulse signals from transformers are collected. Each single-source pulse undergoes transformation into a two-dimensional time-frequency spectrogram using continuous wavelet transform (CWT). The signals are converted into grayscale to enhance contrast while preserving relative intensity information for time-frequency features. Subsequently, a data augmentation method based on the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is employed to expand the sample library. This addresses the imbalance issue among classes in samples used for training ultrasound pulse defect recognition. Additionally, the t-distributed stochastic neighbor embedding (t-SNE) algorithm is utilized to perform dimensionality reduction on generated samples. This filters out low-quality samples and ensures the overall quality for the augmented dataset. Finally, the global attention mechanism (GAM) is introduced to enhance the target detection algorithm YOLOv8. The proposed multi-source localized impulse diagnostic model for transformer ultrasonic time-frequency mapping is applied to identify the multi-source localized impulse test set. The average identification accuracy of each type of localized impulse reaches 95.67%, validating the effectiveness of the proposed methodology.

    参考文献
    相似文献
    引证文献
引用本文

董冰冰,李秉华,李建生.油纸绝缘缺陷多源局放超声混合脉冲识别方法[J].电力工程技术,2025,44(5):176-187

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-03
  • 最后修改日期:2025-03-12
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期: 2025-09-28
文章二维码