基于含可变遗忘因子递推最小二乘的电力系统惯量评估方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM711

基金项目:

国家自然科学基金资助项目(52007050)


Evaluation of power system inertia based on recursive least squares with variable forgetting factors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着大规模可再生能源的并网和电力系统电力电子化水平的提升,近年来因惯量水平不足导致的电力系统运行稳定弱化问题时有发生。为此,准确评估高比例新能源电力系统的惯量水平,能够为惯量提升方案的制定提供基础,对于保障电网的安全稳定运行具有重要作用。鉴于此,文中提出一种基于含可变遗忘因子递推最小二乘的电力系统惯量评估方法。首先,构建含高斯白噪声的电力系统受控自回归滑动平均(controlled autoregressive moving average, CARMA)惯量评估模型;然后,使用赤池信息准则(Akaike information criterion, AIC)确定合适的辨识模型阶次,改善模型过拟合问题,并提出基于指数衰减型可变遗忘因子的改进递推最小二乘算法,通过增强算法对量测数据动态变化的跟踪能力解决数据饱和问题,从而提高惯量辨识结果的准确性;最后,基于算例仿真验证所提方法的有效性和优越性。

    Abstract:

    With the integration of large-scale renewable energy and the increased electrification of power systems, issues related to the weakening of power system stability due to insufficient inertia levels have become frequent in recent years. Consequently, the inertia levels evaluating of high-renewable-energy power systems is crucial for developing effective inertia enhancement strategies and ensuring the safe and stable operation of the power system. A method for power system inertia evaluating based on a recursive least squares algorithm with variable forgetting factor is proposed. Firstly, a controlled autoregressive moving average (CARMA) model, incorporating Gaussian white noise, is developed to evaluate the inertia of the power system. The Akaike Information criterion (AIC) is used to determine the appropriate model order, addressing the issue of model overfitting. Then, an improved recursive least squares algorithm with an exponentially decaying variable forgetting factor is proposed to enhance the algorithm's ability to track dynamic changes in the measured data, thereby resolving data saturation issues and improving the accuracy of inertia evaluations. Finally, the effectiveness and superiority of the proposed method are verified through the case study.

    参考文献
    相似文献
    引证文献
引用本文

周茂一,黄婷钰,刘子文,党子妍,许云皓,牛子扬.基于含可变遗忘因子递推最小二乘的电力系统惯量评估方法[J].电力工程技术,2025,44(5):148-158

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-08
  • 最后修改日期:2025-05-26
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期: 2025-09-28
文章二维码