毫米波雷达风力机叶片覆冰检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM614;TP183

基金项目:

内蒙古自治区自然科学基金资助项目(2024LHMS06020);内蒙古自治区科技计划资助项目(2020GG0157)


Millimeter-wave radar implementation scheme for wind turbine blade icing detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风能作为可再生能源,凭借其可靠性和成本优势成为新能源领域的主要竞争者。在气候寒冷的高湿度地区,叶片结冰对风力机性能和耐久性构成严重威胁。基于雷达的材料检测技术因其具有可穿透非极化材料以及不受光照和天气影响的传感能力,可以提供表面状态及深入信息,近年来备受关注。文中提出使用77 GHz毫米波雷达实时检测风机叶片覆冰状态的方法,从原始中频信号提取梅尔频率倒谱系数(Mel-frequency cepstral coefficient, MFCC)融合一维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)对叶片覆冰类型进行分类识别。通过实验在可控距离和方向变化中验证文中所提方法的有效性。实验结果表明,该方法可以精准识别4种覆冰类型及不同厚度覆冰,识别率可达94%,且在风力发电机叶片覆光滑薄冰阶段即可识别,进行预警。

    Abstract:

    Wind energy is recognized as a renewable source due to its reliability and low cost. However, under cold and humid conditions, blade icing poses a serious hazard to the performance and durability of wind turbines. Millimeter-wave radar-based inspection techniques have gained attention for their ability to penetrate non-polarized materials and provide surface conditions and in-depth information independently of light and weather conditions. A real-time detection method for wind turbine blade icing using 77 GHz millimeter-wave radar is proposed. Mel-frequency cepstral coefficients (MFCCs) are extracted from mixed-frequency time-domain signals and fused with one-dimensional convolutional neural network (1D-CNN) for classification and identification of blade icing types. The effectiveness of the proposed method is verified through experiments with varying distances and directions. Four icing types and different thicknesses are accurately recognized, achieving a recognition rate of 94%. Thin ice coverage on wind turbine blades can be recognized and warned against.

    参考文献
    相似文献
    引证文献
引用本文

张自豪,王志春.毫米波雷达风力机叶片覆冰检测方法[J].电力工程技术,2025,44(5):79-89

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-05
  • 最后修改日期:2025-03-12
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期: 2025-09-28
文章二维码