基于数据驱动的并网逆变器无模型预测电流控制
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM464

基金项目:

国家自然科学基金资助项目(52277045)


A data driven model-free predictive current control for grid-connected inverters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统模型预测电流控制因其响应迅速和多目标优化优势,在并网逆变器控制领域得到广泛研究。文中针对传统模型预测电流控制中因参数失配导致控制性能下降的问题,提出一种基于数据驱动的无模型预测电流控制策略。首先,采用加权平均电流方法对三阶LCL型滤波器系统进行降阶处理,以抑制LCL谐振频率引起的振荡;然后,利用超局部模型简化传统预测电流模型,并通过设计线性扩张状态观测器对系统扰动进行估计和补偿,从而提高电流预测精度;最后,基于系统运行数据,应用递归最小二乘法在线更新系统模型,降低控制系统对参数的依赖。仿真与硬件在环实验结果证明,相较于传统模型预测电流控制,所提出的控制策略在参数失配情况下具有更强的鲁棒性且稳态性能更优。

    Abstract:

    Traditional model predictive current control has been widely studied in the field of grid-connected inverter control due to its rapid response and multi-objective optimization capabilities. A data driven model-free predictive current control strategy is proposed to address the problem of control performance degradation caused by parameter mismatch in traditional model predictive current control. Firstly, the weighted average current method is used to reduce the order of the third-order LCL filter system, suppressing oscillations caused by LCL resonant frequency. Then, the ultra local model is adopted to simplify the traditional predictive current model, and a linear extended state observer is designed to estimate and compensate for system disturbances, thereby improving the accuracy of current prediction. Finally, the recursive least squares method is used to update the system model online based on system operating data, reducing the dependence of the control system on parameters. The simulation and hardware-in-the-loop experimental results demonstrate that compared to traditional model predictive current control, the proposed control strategy exhibits strong robustness and good steady-state performance under parameter mismatch conditions.

    参考文献
    相似文献
    引证文献
引用本文

杨金东,张锡然,杨泽宇,荣飞.基于数据驱动的并网逆变器无模型预测电流控制[J].电力工程技术,2025,44(4):197-206

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-21
  • 最后修改日期:2024-12-05
  • 录用日期:
  • 在线发布日期: 2025-08-01
  • 出版日期: 2025-07-28
文章二维码