基于改进YOLOv8算法的10 kV配电线路导线裸露检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM754

基金项目:

江苏省科技成果转化专项资金项目(BA2022105)


Exposed conductor detection of 10 kV distribution line based on improved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    10 kV配电线路导线裸露是造成配电网线路运行故障的重要诱因之一,严重威胁配电网的安全稳定运行。传统人工运维巡视手段往往无法及时发现该类缺陷。针对此问题,文中提出一种基于改进YOLOv8算法的10 kV配电线路导线裸露的检测方法,用以辅助电网运维人员快速高效检测导线裸露缺陷。该算法在主干网络利用全维动态卷积代替原始卷积,通过多维度特征提取增强对导线裸露的特征捕捉能力;在颈部网络中,将注意力嵌入模块与原网络中的跨阶段特征融合模块相结合,加强高层特征与低层特征之间的联系,从而更好地分析导线裸露的整体形状和局部细节信息;在损失函数上,选用距离交并比和归一化瓦塞尔斯坦距离相结合的方法,提高无人机拍摄的巡检照片中导线裸露目标的关注度。实验结果表明,改进算法相较原始算法在准确率、召回率和平均精度上分别提升了4.8个百分点、4.2个百分点、5.2个百分点,有效提升了配电网导线裸露的检测能力,为电力系统的安全稳定运行提供了新的技术手段。

    Abstract:

    Exposed conductors in 10 kV distribution line are one of the major causes with operational faults in distribution lines, continuously affecting the safe and stable operation of the distribution network. Traditional manual inspection methods often fail to detect such defects in a timely manner. A detection method for exposed conductors in 10 kV distribution lines is proposd based on an improved YOLOv8 algorithm,which is designed to assist power grid maintenance personnel detecting conductor exposed defects quickly and efficiently. The algorithm replaces the original convolution with omni-dimensional dynamic convolution in the backbone network, enhancing the features of exposed conductors through multi-dimensional feature extraction. In the neck network, the connection between high-level and low-level features is enhanced by combining attention embedding module with the cross stage feature fusion module of the original network, thereby analyzing both the overall shape and local details of exposed conductors. For the loss function, distance intersection over union with normalized wasserstein distance is combined to increase focus on cases where targets are small or background interference exists in drone inspection photographs. The experimental results demonstrate that the improved algorithm achieves increases of 4.8 percentage points, 4.2 percentage points, and 5.2 percentage points in precision, recall, and mean average precision, respectively, compared to the original algorithm. This effectively enhances the detection capability for exposed distribution conductors, providing a new technical approach for ensuring the safe and stable operation of power systems.

    参考文献
    相似文献
    引证文献
引用本文

荆启文,郝思鹏,李思源.基于改进YOLOv8算法的10 kV配电线路导线裸露检测[J].电力工程技术,2025,44(3):201-210

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-27
  • 最后修改日期:2024-12-02
  • 录用日期:
  • 在线发布日期: 2025-06-04
  • 出版日期: 2025-05-28
文章二维码