基于合作博弈与动态分时电价的电动汽车有序充放电策略
作者:
中图分类号:

TM73

基金项目:

国家自然科学基金资助项目(52107107)


An orderly charging and discharging strategy for electric vehicles based on cooperative game and dynamic time-of-use pricing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着电动汽车的迅速发展,其在用电高峰期的充电需求给配电网带来了巨大的供电压力。现有研究中,虽然对电动汽车进行有序充放电调度能够有效缓解配电网的供电压力,但大多数电动汽车充电站代理商并未考虑不同电动汽车用户之间的需求差异性,无差别对待电动汽车的充放电调度,只会徒增电网侧的供电压力。为解决此类问题,文中首先在合作博弈的框架下,考虑电动汽车代理商与电动汽车用户之间的博弈关系,提出电价指导用户充电选择的电动汽车充电调度优化方法,并搭建电动汽车的动态分时优化充放电仿真模型。然后,在求解过程中,利用改进的果蝇优化算法(fruit fly optimization algorithm, FOA)对电动汽车充电时段进行规划。最后,通过算例仿真分析验证该策略的可行性与经济性。与现有的固定电价策略相比,所提策略不仅可以有效减小电网负荷的峰谷差,避免负荷“新高峰”,而且可以提高代理商和电动汽车用户的收益。

    Abstract:

    Currently, the distribution grid is substantially pressured due to the charging requirements of electric vehicles during peak hours with the rapid growth of electric vehicles. Existing studies indicate that the power supply pressure on the distribution grid can be effectively mitigated by the orderly charging and discharging scheduling of electric vehicles. However, the disparities in charging and discharging needs among different electric vehicle users are not considered by the majority of electric vehicle charging station operators, which treat the charging and discharging scheduling of electric vehicles uniformly, thus increasing grid pressure. To address this, an optimization approach for electric vehicle charging scheduling based on electricity price guidance is proposed in this paper, for the game between electric vehicle operators and users under a cooperative game framework. Additionally, a dynamic time-of-use optimized charging and discharging simulation model for electric vehicles is constructed. In the solution process, an improved fruit fly optimization algorithm (FOA) is uesd to plan the charging periods of electric vehicles. Eventually, the feasibility and economic advantages of the proposed strategy are verified through case study simulation analysis. Compared to the existing fixed electricity price strategy, the proposed strategy not only effectively reduces the peak-to-valley differences of the grid load and prevents new load peaks but also improves the benefits for both electric vehicle operators and users.

    参考文献
    [1] 李怡然,张姝,肖先勇,等. V2G模式下计及供需两侧需求的电动汽车充放电调度策略[J]. 电力自动化设备,2021,41(3):129-135,143.
    LI Yiran, ZHANG Shu, XIAO Xianyong, et al. Charging and discharging scheduling strategy of EVs considering demands of supply side and demand side under V2G mode[J]. Electric Power Automation Equipment, 2021, 41(3): 129-135, 143.
    [2] 张夏韦,梁军,王要强,等. 电动汽车充电负荷时空分布预测研究综述[J]. 电力建设,2023,44(12):161-173.
    ZHANG Xiawei, LIANG Jun, WANG Yaoqiang, et al. Overview of research on spatiotemporal distribution prediction of electric vehicle charging[J]. Electric Power Construction, 2023, 44(12): 161-173.
    [3] 罗继东,邹梦丽,侯宝华, 等. 考虑V2G及碳排放量的风光储综合能源系统协调优化运行[J]. 电测与仪表,2024,61(6):20-25,35.
    LUO Jidong, ZOU Mengli, HOU Baohua, et al. Coordinated and optimal operation of wind-solar-battery integrated energy system considering V2G and carbon emission[J]. Electrical Measurement & Instrumentation, 2024, 61(6): 20-25,35.
    [4] 张亮,王秀丽,王建学,等. 基于分区电价的跨区电力调度双层优化模型[J]. 电力自动化设备,2023,43(8):195-201.
    ZHANG Liang, WANG Xiuli, WANG Jianxue, et al. Bi-level optimization model of inter-regional power dispatch based on regional electricity price[J]. Electric Power Automation Equipment, 2023, 43(8): 195-201.
    [5] 叶文浩,陈耀红,颜勤,等. 基于动态分时电价引导的电动汽车需求侧响应[J]. 电力科学与技术学报,2024,39(4):138-145.
    YE Wenhao, CHEN Yaohong, YAN Qin, et al. Demand response of electric vehicle based on dynamic time-to-use electricity price[J]. Journal of Electric Power Science and Technology, 2024, 39(4): 138-145.
    [6] 林铭蓉. 基于电动汽车负荷预测和需求响应的路-电耦合配电网可靠性研究[D]. 武汉:武汉大学,2022.
    LIN Mingrong. Research on reliability of road-electricity coupled distribution network based on electric vehicle load forecasting and demand response [D]. Wuhan: Wuhan University, 2022.
    [7] 李强,朱丹丹,黄地,等. 虚拟电厂运营商与电动汽车用户的主从博弈定价策略[J]. 电力工程技术,2022,41(4):183-191.
    LI Qiang, ZHU Dandan, HUANG Di, et al. Stackelberg game pricing strategy between virtual power plant operators and electric vehicle users[J]. Electric Power Engineering Technology, 2022, 41(4): 183-191.
    [8] 帅轩越,王秀丽,吴雄. 用户侧有限理性下基于主从博弈与电热需求响应的综合能源微网优化运行[J]. 电力自动化设备,2021,41(11):25-31.
    SHUAI Xuanyue, WANG Xiuli, WU Xiong. Optimal operation of integrated energy microgrid based on leader-follower game and electricity and heat demand response under user-side limited rationality[J]. Electric Power Automation Equipment, 2021, 41(11): 25-31.
    [9] 刘又榕,林顺富,沈运帷,等. 计及电动汽车参与多元需求响应的微电网多时间尺度优化调度模型[J]. 电力建设,2023,44(10):51-62.
    LIU Yourong, LIN Shunfu, SHEN Yunwei, et al. Multi-time-scale optimization scheduling model of microgrid with electric vehicles participating in multiple demand response[J]. Electric Power Construction, 2023, 44(10): 51-62.
    [10] 何鑫雨,董萍,刘明波,等. 基于双层演化博弈模型的多区域点对点能源共享机制[J]. 电网技术,2023,47(1):163-174.
    HE Xinyu, DONG Ping, LIU Mingbo, et al. Multi-region P2P energy sharing mechanism based on two-stage evolutionary game model[J]. Power System Technology, 2023, 47(1): 163-174.
    [11] 刘蓉晖,王乐凯,孙改平,等. 考虑不确定性的风-光-储合作联盟参与含需求响应的主辅联合市场的竞价交易模型[J]. 电力系统保护与控制,2023,51(11):96-107.
    LIU Ronghui, WANG Lekai, SUN Gaiping, et al. Bidding transaction model of wind-solar-storage cooperative alliance participating in the main and auxiliary joint market with demand response considering uncertainty[J]. Power System Protection and Control, 2023, 51(11): 96-107.
    [12] YANG F Q, YU S S, MENG C, et al. A three-stage optimization of charging scheduling of electric vehicles considering electricity price and user selection[J]. Electrical Engineering, 2024, 106(4): 4737-4746.
    [13] MOHAMMED S S, IMTHIAS AHAMED T P, ABDEL ALEEM S H E, et al. Interruptible charge scheduling of plug-in electric vehicle to minimize charging cost using heuristic algorithm[J]. Electrical Engineering, 2022, 104(3): 1425-1440.
    [14] KASTURI K, NAYAK C K, NAYAK M R. Photovoltaic and electric vehicle-to-grid strategies for peak load shifting in low voltage distribution system under time of use grid pricing[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2021, 45(3): 789-801.
    [15] SONG Y Q, SHANGGUAN L Z, LI G J. Simulation analysis of flexible concession period contracts in electric vehicle charging infrastructure public-private-partnership (EVCI-PPP) projects based on time-of-use (TOU) charging price strategy[J]. Energy, 2021, 228: 120328.
    [16] 朱磊,黄河,高松,等. 计及风电消纳的电动汽车负荷优化配置研究[J]. 中国电机工程学报,2021,41(S1):194-203.
    ZHU Lei, HUANG He, GAO Song, et al. Research on optimal load allocation of electric vehicle considering wind power consumption[J]. Proceedings of the CSEE, 2021, 41(S1): 194-203.
    [17] 王毅,陈进,麻秀,等. 采用分群优化的电动汽车与电网互动调度策略[J]. 电力自动化设备,2020,40(5):77-85.
    WANG Yi, CHEN Jin, MA Xiu, et al. Interactive scheduling strategy between electric vehicles and power grid based on group optimization[J]. Electric Power Automation Equipment, 2020, 40(5): 77-85.
    [18] LIANG S D, ZHU B Q, HE J J, et al. A pricing strategy for electric vehicle charging in residential areas considering the uncertainty of charging time and demand[J]. Computer Communications, 2023, 199: 153-167.
    [19] 周凯乐,程乐新,卢新辉,等. 考虑不便和动态电价的电动汽车充电调度模型[J]. 应用能源,2020,276:115455.
    ZHOU Kaile, CHENG Lexin, LU Xinhui, et al. Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices[J]. Applied Energy, 2020, 276: 115455.
    [20] 潘文超. 应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J]. 太原理工大学学报(社会科学版),2011,29(4):1-5.
    PAN Wenchao. Using fruit fly optimization algorithm optimized general regression neural network to construct the operating performance of enterprises model[J]. Journal of Taiyuan University of Technology (Social Sciences Edition), 2011, 29(4): 1-5.
    [21] 王敏,吕林,向月. 计及V2G价格激励的电动汽车削峰协同调度策略[J]. 电力自动化设备,2022,42(4):27-33,85.
    WANG Min, LÜ Lin, XIANG Yue. Coordinated scheduling strategy of electric vehicles for peak shaving considering V2G price incentive[J]. Electric Power Automation Equipment, 2022, 42(4): 27-33, 85.
    [22] HUSSAIN S, IRSHAD R R, PALLONETTO F, et al. Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles[J]. Applied Energy, 2023, 352: 121939.
    [23] LIU L, ZHOU K L. Electric vehicle charging scheduling considering urgent demand under different charging modes[J]. Energy, 2022, 249: 123714.
    [24] 王汉华,陈永进. 电动汽车充电设施接入配电网的最优布点规划[J]. 广东电力,2018,31(4):72-78.
    WANG Hanhua, CHEN Yongjin. Optimal stationing planning for electric vehicle charging facilities accessing to distribution network[J]. Guangdong Electric Power, 2018, 31(4): 72-78.
    [25] 付亦殊,陈红坤,姜欣,等. 促进大规模风电消纳的双层调峰补偿机制研究[J]. 电力系统保护与控制,2019,47(4):51-57.
    FU Yishu, CHEN Hongkun, JIANG Xin, et al. A bi-layer peak-regulation compensation mechanism for large-scale wind power integration[J]. Power System Protection and Control, 2019, 47(4): 51-57.
    [26] GATELY D. Sharing the gains from regional cooperation: a game theoretic application to planning investment in electric power[J]. International Economic Review, 1974, 15(1): 195.
    [27] 牛淑娅,曾博,刘文霞,等. 基于合作博弈的电动汽车换电站优化配置[J]. 南方电网技术,2016,10(12):53-60.
    NIU Shuya, ZENG Bo, LIU Wenxia, et al. Cooperative game based optimal capacity configuration of battery swapping station for electric vehicles[J]. Southern Power System Technology, 2016, 10(12): 53-60.
    [28] CHENG X, CHEN L, XU B. An improved fruit fly optimization algorithm for solving high dimensional problems[C]//2018 37th Chinese Control Conference (CCC). Wuhan, China. 2018: 2310-2316.
    [29] 林昱奂,胡嘉铭,戴伟力,等. 基于改进K-均值联合SVDD的电力数据异常检测方法[J]. 电力电容器与无功补偿,2023,44(5):99-107.
    LIN Yuhuan, HU Jiaming, DAI Weili, et al. Power data abnormaly detection method based on improved K-means and SVDD[J]. Power Capacitor & Reactive Power Compensation, 2023, 44(5): 99-107.
    [30] 杨健维,苟方杰,黄宇,等. 基于不确定性测度的居民小区电动汽车充电分时电价制定策略[J]. 电网技术,2018,42(1):96-102.
    YANG Jianwei, GOU Fangjie, HUANG Yu, et al. Residential area electric vehicle charging pricing strategy based on uncertainty measure[J]. Power System Technology, 2018, 42(1): 96-102.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

舒征宇,刘文灿,李黄强,王灿,姚钦.基于合作博弈与动态分时电价的电动汽车有序充放电策略[J].电力工程技术,2025,44(3):179-187

复制
分享
文章指标
  • 点击次数:17
  • 下载次数: 70
  • HTML阅读次数: 77
  • 引用次数: 0
历史
  • 收稿日期:2024-10-11
  • 最后修改日期:2024-12-23
  • 在线发布日期: 2025-06-04
  • 出版日期: 2025-05-28
文章二维码