换流变压器交流消磁及验证装置的研究
作者:
基金项目:

国家自然科学基金-智能电网联合基金资助项目(U1866603)


AC degaussing and verification device of converter transformer
Author:
Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解决传统交流消磁设备存在的消磁时间长、所需电压高和设备体积大等问题,在分析换流变压器剩磁产生及传统消磁原理的基础上,提出了一种基于正弦脉冲宽度调制(SPWM)技术的低电压交流消磁法。采用高稳定性SPWM数字电源技术和高计算性能微控制器,通过数字方式精确控制SPWM电源输出交流电压幅度和频率,实现低电压条件下获取较大交流消磁电流并能够精确调节电流幅度的目的,同时低电压条件可极大减小设备体积、重量,缩短消磁时间。采用无锁相环、无严格同步要求的准同步采样技术,实现了宽频率范围交流电压、电流有效值的高精度测量。研制了换流变压器消磁及验证装置,对具有剩磁的换流变压器进行消磁试验,其消磁后的励磁涌流明显降低,体现了该装置显著的消磁效果。提出了通过对换流变压器接入低压交流测试电压,对比消磁前后变压器空载电流大小的消磁效果验证方法,试验结果表明该验证方法有效可行。

    Abstract:

    In order to solve the problems of long demagnetization time,high required voltage and large equipment required of traditional AC demagnetization equipment, a low-voltage AC degaussing method based on sinusoidal pulse width modulation(SPWM) technology is proposed based on the analysis of the residual magnetization of the converter transformer and the traditional demagnetization principle. Using high stability SPWM digital power supply technology and high computing performance microcontroller, the AC voltage amplitude and frequency is output from SPWM by digitally controlling to achieve the purpose of obtaining a large AC demagnetization current under low voltage conditions and being able to accurately adjust the current amplitude, while the low voltage conditions can greatly reduce the size and weight of the equipment and shorten the demagnetization time. Using quasi-synchronous sampling technology without phase-locked loop and without strict synchronization requirements, high-precision measurement of the effective value of AC voltage and current in a wide frequency range is realized. A degaussing and verification device for the converter transformer is developed and a degaussing test is carried out for the converter transformer with residual magnetism. The results show that the demagnetizing inrush current after demagnetization is significantly reduced, reflecting the significant degaussing effect of the device. A degaussing effect verification method is proposed by connecting the low-voltage AC test voltage to the converter transformer and comparing the no-load current of the transformer before and after degaussing. The test results show that the verification method is effective and feasible.

    参考文献
    [1] 刘从法, 殷飞, 周楠, 等. ±1 100 kV古泉换流站接地极对变压器直流偏磁的影响[J]. 电力工程技术, 2018, 37(3):145-151. LIU Congfa, YIN Fei, ZHOU Nan, et al. Impact on DC bias magnetic of the power transformers by grounding electrode current of ±1 100 kV Guquan convertor station[J]. Electric Power Engineering Technology, 2018, 37(3):145-151.
    [2] 刘连升, 阴丽美, 李宁, 等. 剩磁对大型电力变压器的危害及消除方法[J]. 变压器, 2016, 53(5):56-59. LIU Liansheng, YIN Limei, LI Ning, et al. Harm and elimination method of remanence to large power transformer[J]. Transformer, 2016, 53(5):56-59.
    [3] JAMET M, WERNSDORFER W, THIRION C, et al. Magnetic anisotropy in single clusters[J]. Physical Review B, 2004, 69(2):1129-1133.
    [4] 潘超, 郑永健, 王旭, 等. 倍频ICPT系统松耦合变压器电磁耦合特性研究[J]. 电力电子技术, 2017, 51(4):105-107. PAN Chao, ZHENG Yongjian, WANG Xu, et al. Research on the electromagnetic coupling characteristics of loosely coupled transformer in multi-frequency ICPT system[J]. Power Electronics, 2017, 51(4):105-107.
    [5] CAVALLERA D, OIRING V, COULOMB J L, et al. A new method to evaluate residual flux thanks to leakage flux, application to a transformer[J]. IEEE transactions on magnetics, 2014, 50(2):1005-1008.
    [6] 戈文祺, 汪友华, 陈学广, 等. 电力变压器铁芯剩磁的测量与削弱方法[J]. 电工技术学报, 2015, 30(16):10-16. GE Wenqi, WANG Youhua, CHEN Xueguang, et al. Method to measure and weaken the residual flux of the power transformer core[J]. Transactions of China Electrotechnical Society, 2015, 30(16):10-16.
    [7] 张晓洁, 杨勃, 陈垒. 一种基于磁滞回线的变压器剩磁计算方法研究[J]. 变压器, 2015, 52(10):11-13. ZHANG Xiaojie, YANG Bo, CHEN Lei. A method to calculate remmant magnetic flux of transformers based on hysteresis loop[J]. Transformer, 2015, 52(10):11-13.
    [8] 牛帅杰, 赵莉华, 陈凌, 等. 基于时间-电流曲线的变压器剩磁检测方法研究[J]. 电测与仪表, 2017, 54(7):64-68. NIU Shuaijie, ZHAO Lihua, CHEN Ling, et al. Study on transformer residual flux detection method based on the time-current curve[J]. Electrical Measurement & Instrumentation, 2017, 54(7):64-68.
    [9] 刘涛, 刘鑫, 梁仕斌, 等. 基于极性变化直流电压源的铁磁元件铁芯剩磁通测量方法[J]. 电工技术学报, 2017, 32(13):137-144. LIU Tao, LIU Xin, LIANG Shibin, et al. Residual flux measuring method on the core of ferromagnetic components based on alternating polarity DC voltage source[J]. Transactions of China Electrotechnical Society, 2017, 32(13):137-144.
    [10] IEEE B E. IEEE standard requirements for instrument transformers[S]. 2008.
    [11] FIORILLO F. Measurements of magnetic materials[J]. Metrologia, 2010, 47(2):114-142.
    [12] LEON F D, FARAZMAND A, JAZEBI S, et al. Elimination of residual flux in transformers by the application of an alternating polarity DC voltage source[J]. IEEE Transactions on Power Delivery, 2015, 30(4):1727-1734.
    [13] 方园, 施仁毅, 夏家辉, 等. 一种基于J-A磁滞模型的变压器在线运行状态监测的方法[J]. 电力工程技术, 2019, 38(5):177-184. FANG Yuan, SHI Renyi, XIA Jiahui, et al. Transformer online operation monitoring method based on J-A hysteresis model[J]. Electric Power Engineering Technology, 2019, 38(5):177-184.
    [14] 仇明. 大型变压器铁芯剩磁的危害及消除方法[J]. 变压器, 2018, 55(2):74-75. QIU Ming. Harm and elimination method of core remanence of large transformer[J]. Transformer, 2018, 55(2):74-75.
    [15] 宁铎, 尤磊, 李英春, 等. 变压器差动保护动作特性的仿真研究[J]. 电力系统保护与控制, 2017, 45(4):99-106. NING Duo, YOU Lei, LI Yingchun, et al. Simulation research on the operating characteristic of transformer differential protection[J]. Power System Protection and Control, 2017, 45(4):99-106.
    [16] 常勇, 沈志刚, 张鹏. 换流变套管末屏电压采集器铁磁谐振机理分析及抑制[J]. 电力工程技术, 2018, 37(5):81-85. CHANG Yong, SHEN Zhigang, ZHANG Peng. Ferromagnetic resonance mechanism of voltage divider ofthe converter transformer bushing and its suppression[J]. Electric Power Engineering Technology, 2018, 37(5):81-85.
    [17] 郭艳梅, 龚春英, 邓翔. 一种磁隔离的交流电流峰值检测电路[J]. 电力电子技术, 2018, 52(12):32-36. GUO Yanmei, GONG Chunying, DENG Xiang, et al. A magnetic isolation circuit for peak detection of alternating current[J]. Power Electronics, 2018, 52(12):32-36.
    [18] JACEK H. Reduction of inrush current by demagnetization of magnetic core[J]. International Journal of Applied Electromagnetics and Mechanics, 2012(39):1013-1019.
    [19] 张瑞, 甘战, 张鹏, 等. 换流变压器空载励磁涌流选相关合控制策略[J]. 电力系统保护与控制, 2019, 47(15):69-77. ZHANG Rui, GAN Zhan, ZHANG Peng, et al. Controlled switching strategies to eliminate the inrush current of converter transformer[J]. Power System Protection and Control, 2019, 47(15):69-77.
    [20] 夏海涛, 周小平, 洪乐荣, 等. 一种抑制后续换相失败的自适应电流偏差控制方法[J]. 中国电机工程学报, 2019, 39(15):4345-4356. XIA Haitao, ZHOU Xiaoping, HONG Lerong, et al. An adaptive current deviation control method for suppressing following commutation failures[J]. Proceedings of the CSEE, 2019, 39(15):4345-4356.
    [21] 张喜乐, 何松坡, 王建民, 等. 换流变压器绕组损耗及热点温升的仿真研究[J]. 变压器, 2019, 56(7):24-28. ZHANG Xile, HE Songpo, WANG Jianmin, et al. Numerical simulation of winding loss and hot spot temperature rise for converter transformer[J]. Transformer, 2019, 56(7):24-28.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘志远,于晓军,邹洪森,张帅,史磊,郝治国.换流变压器交流消磁及验证装置的研究[J].电力工程技术,2020,39(4):194-200

复制
分享
文章指标
  • 点击次数:1668
  • 下载次数: 2200
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-02-27
  • 最后修改日期:2020-04-03
  • 录用日期:2020-04-22
  • 在线发布日期: 2020-08-03
  • 出版日期: 2020-07-28
文章二维码